giải hệ phương trình sau
\(\hept{\begin{cases}x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{51}{4}\\x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{774}{16}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét phương trình hoành độ giao điểm:
\(x^2=mx+1\Leftrightarrow x^2-mx-1=0\) (1)
\(\Delta=\left(-m\right)^2-4\left(-1\right)=m^2+4>0\)
Vì vậy phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)
Theo Viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-1\end{cases}}\) nên \(x_1;x_2\) là hai số trái dấu.
Vậy thì với mọi m, (d) luôn giao (P) tại hai điểm phân biệt nằm khác phía với trục tung.
b) Giả sử \(A\left(x_1;x_1^2\right);B\left(x_2;x_2^2\right)\)
\(\Rightarrow AB^2=\left(x_2-x_1\right)^2+\left(x_2^2-x_1^2\right)^2=\left(x_2-x_1\right)^2\left[1+\left(x_2+x_1\right)^2\right]\)
\(=\left[\left(x_1+x_2\right)^2-4x_1.x_2\right]\left\{1+\left(x_1+x_2\right)^2\right\}\)
\(=\left(m^2+4\right)\left[1+m^2\right]\)
\(=m^4+5m^2+4\)
Ta cũng có: \(OA^2+OB^2=x_1^2+x_2^4+x_2^2+x_2^4\)
\(=\left(x_1^2+x_2^2\right)+\left(x_1^4+x_2^4\right)=\left(x_1+x_2\right)^2-2x_1.x_2+\left(x_1^2+x_2^2\right)^2-2x_1^2.x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2+\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]^2-2x_1^2.x_2^2\)
\(=m^2+2+\left(m^2+2\right)^2-2=m^4+5m^2+4\)
Vậy nên \(AB^2=OA^2+OB^2\) hay tam giác OAB vuông tại 0.
Vậy thì \(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\sqrt{\left(x_1^2+x_1^4\right)\left(x_2^2+x_2^4\right)}\)
\(=\frac{1}{2}\sqrt{x_1^2.x_2^2+x_1^2.x_2^4+x_1^4.x_2^2+x_1^4x_2^4}=\frac{1}{2}\sqrt{1+x_2^2+x_1^2+1}\)
\(=\frac{1}{2}\sqrt{\left(x_1+x_2\right)^2-2x_1.x_2+2}=\frac{1}{2}\sqrt{m^2+4}\)
Để \(S_{OAB}=2\Rightarrow\frac{1}{2}\sqrt{m^2+4}=2\Leftrightarrow\sqrt{m^2+4}=4\)
\(\Leftrightarrow m^2=12\Leftrightarrow m=\pm2\sqrt{3}\)
Ta có: \(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\x+2\left(3x-2m+1\right)=3m+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x-4m+2=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x=7m\end{cases}\Leftrightarrow\hept{\begin{cases}y=m+1\\x=m\end{cases}}}\)
Vây với mọi m, hệ phương trình luôn có nghiệm duy nhất (x ; y) = (m ; m + 1)
Độ dài đoạn thẳng OM bằng: \(\sqrt{m^2+\left(m+1\right)^2}=\sqrt{2m^2+2m+1}\)
Để M thuộc đường tròn \(\left(O;\sqrt{5}\right)\) thì \(\sqrt{2m^2+2m+1}=\sqrt{5}\Leftrightarrow2m^2+2m-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)