K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

a) Xét phương trình hoành độ giao điểm:

\(x^2=mx+1\Leftrightarrow x^2-mx-1=0\)   (1)

\(\Delta=\left(-m\right)^2-4\left(-1\right)=m^2+4>0\)

Vì vậy phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)

Theo Viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=-1\end{cases}}\) nên \(x_1;x_2\) là hai số trái dấu.

Vậy thì với mọi m, (d) luôn giao (P) tại hai điểm phân biệt nằm khác phía với trục tung.

b) Giả sử \(A\left(x_1;x_1^2\right);B\left(x_2;x_2^2\right)\)

\(\Rightarrow AB^2=\left(x_2-x_1\right)^2+\left(x_2^2-x_1^2\right)^2=\left(x_2-x_1\right)^2\left[1+\left(x_2+x_1\right)^2\right]\)

\(=\left[\left(x_1+x_2\right)^2-4x_1.x_2\right]\left\{1+\left(x_1+x_2\right)^2\right\}\)

\(=\left(m^2+4\right)\left[1+m^2\right]\)

\(=m^4+5m^2+4\)

Ta cũng có: \(OA^2+OB^2=x_1^2+x_2^4+x_2^2+x_2^4\)

\(=\left(x_1^2+x_2^2\right)+\left(x_1^4+x_2^4\right)=\left(x_1+x_2\right)^2-2x_1.x_2+\left(x_1^2+x_2^2\right)^2-2x_1^2.x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2+\left[\left(x_1+x_2\right)^2-2x_1.x_2\right]^2-2x_1^2.x_2^2\)

\(=m^2+2+\left(m^2+2\right)^2-2=m^4+5m^2+4\)

Vậy nên \(AB^2=OA^2+OB^2\)  hay tam giác OAB vuông tại 0. 

Vậy thì \(S_{OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\sqrt{\left(x_1^2+x_1^4\right)\left(x_2^2+x_2^4\right)}\)

\(=\frac{1}{2}\sqrt{x_1^2.x_2^2+x_1^2.x_2^4+x_1^4.x_2^2+x_1^4x_2^4}=\frac{1}{2}\sqrt{1+x_2^2+x_1^2+1}\)

\(=\frac{1}{2}\sqrt{\left(x_1+x_2\right)^2-2x_1.x_2+2}=\frac{1}{2}\sqrt{m^2+4}\)

Để \(S_{OAB}=2\Rightarrow\frac{1}{2}\sqrt{m^2+4}=2\Leftrightarrow\sqrt{m^2+4}=4\)

\(\Leftrightarrow m^2=12\Leftrightarrow m=\pm2\sqrt{3}\)

15 tháng 4 2019

fan cr7

24 tháng 3 2018

Ta có: \(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\x+2\left(3x-2m+1\right)=3m+2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x-4m+2=3m+2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=3x-2m+1\\7x=7m\end{cases}\Leftrightarrow\hept{\begin{cases}y=m+1\\x=m\end{cases}}}\)

Vây với mọi m, hệ phương trình luôn có nghiệm duy nhất (x ; y) = (m ; m + 1)

Độ dài đoạn thẳng OM bằng: \(\sqrt{m^2+\left(m+1\right)^2}=\sqrt{2m^2+2m+1}\)

Để M thuộc đường tròn \(\left(O;\sqrt{5}\right)\) thì \(\sqrt{2m^2+2m+1}=\sqrt{5}\Leftrightarrow2m^2+2m-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)