a) (1 điểm) Cho hình vẽ, biết $\widehat {mOx} = 30^{\circ}$ và $Ot$ là tia phân giác của $\widehat{nOx}$.
Tính số đo của $\widehat{nOt}$.
b) (1 điểm) Cho hình vẽ, biết a // b và $\widehat{A_4}=65^{\circ}$.
Tính số đo của $\widehat{B_3}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25% = 1/4
Số đường còn lại sau khi bán 25%:
1 - 1/4 = 3/4 (số đường)
Số đường bán trong ngày thứ hai:
4/9 . 3/4 = 1/3 (số đường)
Số đường ngày thứ ba bán được:
1 - 1/4 - 1/3 = 5/12 (số đường)
Tỉ số đường bán được của ngày thứ ba và ngày thứ nhất:
5/12 : 1/4 = 5/3
Ngày thứ nhất bán được số kg đường là:
120.25%=30120.25%=30 (kg đường)
Sau ngày thứ nhất, số đường còn lại là:
120−30=90120−30=90 (kg)
Ngày thứ hai bán được số kg đường là:
90.49=4090.94=40 (kg)
Ngày thứ ba bán được số kg đường là:
120−30−40=50120−30−40=50 (kg)
Vậy Ngày thứ 3 bán đc 50kg
a) x + 2/5 = -4/3
x = -4/3 - 2/5
x = -26/15
b) -5/6 + 1/3 x = (-1/2)²
-5/6 + 1/3 x = 1/4
1/3 x = 1/4 + 5/6
1/3 x = 13/12
x = 13/12 : 1/3
x = 13/4
c) 7/12 - (x + 7/6) . 6/5 = (-1/2)³
7/12 - (x + 7/6) . 6/5 = -1/8
(x + 7/6) . 6/5 = 7/12 + 1/8
(x + 7/6) . 6/5 = 17/24
x + 7/6 = 17/24 : 6/5
x + 7/6 = 85/144
x = 85/144 - 7/6
x = -83/144
\(a,x+\dfrac{2}{5}=-\dfrac{4}{3}\\ \Rightarrow x=-\dfrac{26}{15}\\ b,-\dfrac{5}{6}+\dfrac{1}{3}x=\left(-\dfrac{1}{2}\right)^2\\ \Rightarrow-\dfrac{5}{6}+\dfrac{1}{3}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{1}{3}x=\dfrac{13}{12}\\ \Rightarrow x=\dfrac{13}{4}\\ c,\dfrac{7}{12}-\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=\left(-\dfrac{1}{2}\right)^3\\ \Rightarrow\dfrac{7}{12}-\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=-\dfrac{1}{8}\\ \Rightarrow\left(x+\dfrac{7}{6}\right).\dfrac{6}{5}=\dfrac{17}{24}\\ \Rightarrow x+\dfrac{7}{6}=\dfrac{85}{144}\\ \Rightarrow x=-\dfrac{83}{144}.\)
a) \(\dfrac{4}{9}+\dfrac{1}{4}=\dfrac{25}{36}\)
b) \(\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}\right)+\dfrac{1}{3}\cdot\left(-\dfrac{1}{5}\right)=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)=\dfrac{1}{3}\cdot-1=-\dfrac{1}{3}\)
c) \(\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(1-\dfrac{1}{2}\right)^2\right]=\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(\dfrac{1}{2}\right)^2\right]=\dfrac{1}{5}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)=\dfrac{1}{5}-0=\dfrac{1}{5}\)
`#3107.101107`
`a)`
\(\dfrac{4}{9}+\dfrac{1}{4}=\dfrac{16}{36}+\dfrac{9}{36}=\dfrac{25}{36}\)
`b)`
\(\dfrac{1}{3}\cdot\left(\dfrac{-4}{5}\right)+\dfrac{1}{3}\cdot\left(-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{3}\cdot\left(-1\right)\)
\(=-\dfrac{1}{3}\)
`c)`
\(\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(1-\dfrac{1}{2}\right)^2\right]\)
\(=\dfrac{1}{5}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=\dfrac{1}{5}-0\)
\(=\dfrac{1}{5}\)
a) Bổ sung cho đầy đủ đề
b) (3x - 1)/4 = (2x - 5)/3
3(3x - 1) = 4(2x - 5)
9x - 3 = 8x - 20
9x - 8x = -20 + 3
x = -17
c) Điều kiện: x ≠ -1/3
3/(-2) = (x - 3)/(3x + 1)
3.(3x + 1) = -2(x - 3)
9x + 3 = -2x + 6
9x + 2x = 6 - 3
11x = 3
x = 3/11 (nhận)
Vậy x = 3/11
d) \(x^2=a\left(a\ge0\right)\)
\(\Rightarrow x=\sqrt{a}\)
e) \(x^2=\dfrac{4}{9}\)
\(\Rightarrow x^2=\left(\pm\dfrac{2}{3}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
f) \(x^2-\dfrac{16}{25}=0\)
\(\Rightarrow x^2=\dfrac{16}{25}\)
\(\Rightarrow x^2=\left(\pm\dfrac{4}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
g) \(x^2-\dfrac{7}{36}=0\)
\(\Rightarrow x^2=\dfrac{7}{36}\)
\(\Rightarrow x^2=\left(\pm\sqrt{\dfrac{7}{36}}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{7}{36}}\\x=-\sqrt{\dfrac{7}{36}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{7}}{6}\\x=-\dfrac{\sqrt{7}}{6}\end{matrix}\right.\)
h) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1>0\forall x\)
mà \(x^2+1=0\)
nên không tìm được giá trị nào của x thoả mãn đề bài.
Bài 3
a) 5/7 - x = 6/5
x = 5/7 - 6/5
x = -17/35
b) 4/5 x - 2/3 = 1 1/3
4/5 x - 2/3 = 4/3
4/5 x = 4/3 + 2/3
4/5 x = 2
x = 2 : 4/5
x = 5/2
Ta thấy: \(3\left|x+y\right|\ge0\forall x;y\)
\(10\left|y+\dfrac{2}{3}\right|\ge0\forall y\)
\(\Rightarrow3\left|x+y\right|+10\left|y+\dfrac{2}{3}\right|\ge0\forall x;y\)
Mà: \(3\left|x+y\right|+10\left|y+\dfrac{2}{3}\right|\le0\)
nên: \(\left\{{}\begin{matrix}x+y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x=\dfrac{2}{3};y=-\dfrac{2}{3}\).
a) Xét ∆AMC và ∆EMB có:
AM = EM (gt)
MC = MB (gt)
∠AMC = ∠EMB (đối đỉnh)
⇒ ∆AMC = ∆EMB (c-g-c)
⇒ AC = BE (hai cạnh tương ứng)
b) Do D là trung điểm AB (gt)
⇒ AD = BD
Xét ∆ADF và ∆BDE có:
AD = BD (cmt)
FD = DE (gt)
∠ADF = ∠BDE (đối đỉnh)
⇒ ∆ADF = ∆BDE (c-g-c)
⇒ AF = BE (hai cạnh tương ứng)
Mà BE = AC (cmt)
⇒ AC = AF
a) Ta có:
∠mOx + ∠nOx = 180⁰ (kề bù)
⇒ ∠nOx = 180⁰ - ∠mOx
= 180⁰ - 30⁰
= 150⁰
Do Ot là tia phân giác của ∠nOx
⇒ ∠nOt = ∠nOx : 2
= 150⁰ : 2
= 75⁰
b) Do a // b
⇒ ∠B₄ = ∠A₄ = 65⁰ (đồng vị)
Ta có:
∠B₃ + ∠B₄ = 180⁰ (kề bù)
⇒ ∠B₃ = 180⁰ - ∠B₄
= 180⁰ - 65⁰
= 115⁰
Tính số đo góc �3^B3.
Hướng dẫn giải:a) ���^+���^=180∘mOx+xOn=180∘
Vậy ���^=180∘−30∘=150∘nOx=180∘−30∘=150∘.
��Ot là tia phân giác của ���^nOx, suy ra ���^=12.���^=75∘nOt=21.nOx=75∘.
b) a // b suy ra �4^=�2^=65∘A4=B2=65∘ (hai góc so le trong).
Mặt khác, ta có �2^+�3^=180∘B2+B3=180∘
Suy ra �3^=180∘−�2^=115∘B3=180∘−B2=115∘.