K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19:

a: 71-(x+33)=26

=>x+33=71-26=45

=>x=45-33=12

b: \(\left(x-73\right)\cdot10^2-26=74\)

=>\(100\left(x-73\right)=26+74=100\)

=>x-73=1

=>x=73+1=74

c: \(\left(x+1\right)^3-4=60\)

=>\(\left(x+1\right)^3=4+60=64=4^3\)

=>x+1=4

=>x=3

17:

a: \(3\cdot5^2+15\cdot2^2-26:2\)

\(=3\cdot25+15\cdot4-13\)

=75+60-13

=135-13=122

b: \(37\cdot39+62\cdot21-11\cdot39-21\cdot36\)

\(=39\left(37-11\right)-21\left(62-36\right)\)

\(=39\cdot26-21\cdot26=26\cdot18=468\)

c: \(3^2\cdot5+2^2\cdot10-3^4:3\)

\(=9\cdot5+4\cdot10-3^3\)

=45+40-27

=45+13=58

d: Sửa đề: \(99-96+93-90+...-6+3\)

=(99-96)+(93-90)+...+(9-6)+3

=3+3+...+3

=3x16+3=48+3=51

9 tháng 7 2024

còn anh/chị nào lớp 7 trở lên biết làm những bài này thì cíu elm vớiiii :((

a: Đặt \(A=\left(2x+y\right)^2-2\left(2x+y\right)\left(2x-y\right)+\left(2x-y\right)^2\)

\(=\left(2x+y-2x+y\right)^2=\left(2y\right)^2=4y^2\)

Khi y=3 thì \(A=4\cdot3^2=4\cdot9=36\)

b: Đặt \(B=\left(2x-5\right)\left(2x+5\right)-\left(2x+1\right)^2\)

\(=\left(2x\right)^2-5^2-4x^2-4x-1\)

\(=4x^2-25-4x^2-4x-1=-4x-26\)

Khi x=0 thì \(B=-4\cdot0-26=-26\)

a: Đặt \(A=\left(2x+y\right)^2-2\left(2x+y\right)\left(2x-y\right)+\left(2x-y\right)^2\)

\(=\left(2x+y-2x+y\right)^2=\left(2y\right)^2=4y^2\)

Khi y=3 thì \(A=4\cdot3^2=4\cdot9=36\)

b: Đặt \(B=\left(2x-5\right)\left(2x+5\right)-\left(2x+1\right)^2\)

\(=\left(2x\right)^2-5^2-4x^2-4x-1\)

\(=4x^2-25-4x^2-4x-1=-4x-26\)

Khi x=0 thì \(B=-4\cdot0-26=-26\)

a: Hiệu vận tốc hai xe là:

45:3=15(km/h)

Hiệu số phần bằng nhau là 2-1=1(phần)

Vận tốc của ô tô đi từ A là:

15:1x2=30(km/h)

Vận tốc của ô tô đi từ B là:

30-15=15(km/h)

b: Độ dài quãng đường BC là:

15x3=45(km)

a: Xét ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>\(\widehat{AHB}=\widehat{AHC}\)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

=>AH\(\perp\)BC

c: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{5^2-3^2}=4\left(cm\right)\)

d: ΔAHB=ΔAHC

=>\(\widehat{HAB}=\widehat{HAC}\)

Xét ΔAEH vuông tại E và ΔAKH vuông tại K có

AH chung

\(\widehat{EAH}=\widehat{KAH}\)

Do đó: ΔAEH=ΔAKH

=>HE=HK

e: ΔAEH=ΔAKH

=>AE=AK

Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AK}{AC}\)

nên EK//BC

 

1

Bài 3: Gọi H là giao điểm của CD với AB

\(\widehat{HCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

=>\(\widehat{HCB}+143^0=180^0\)

=>\(\widehat{HCB}=180^0-143^0=37^0\)

Xét ΔHCB có \(\widehat{HCB}+\widehat{HBC}=37^0+53^0=90^0\)

nên ΔHCB vuông tại H

=>CD\(\perp\)AB tại H

Bài 2:

a: Ta có: \(\widehat{DAB}=\widehat{xAM}\)(hai góc đối đỉnh)

mà \(\widehat{xAm}=124^0\)

nên \(\widehat{DAB}=124^0\)

Ta có: \(\widehat{DAB}+\widehat{ABC}=124^0+56^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AD//BC

=>xy//zt

b: xy//zt

=>\(\widehat{BCD}+\widehat{ADC}=180^0\)(hai góc trong cùng phía)

=>\(\widehat{BCD}+90^0=180^0\)

=>\(\widehat{BCD}=90^0\)

Ak là phân giác của góc DAB

=>\(\widehat{DAC}=\dfrac{124^0}{2}=62^0\)

ΔDAC vuông tại D

 

=>\(\widehat{DAC}+\widehat{DCA}=90^0\)

=>\(\widehat{DCA}+62^0=90^0\)

=>\(\widehat{DCA}=28^0\)

loading... ..

2
7 tháng 7 2024

\(1,a)\dfrac{15}{12}-\dfrac{-1}{4}\\ =\dfrac{15}{12}+\dfrac{1}{2}\\ =\dfrac{15}{12}+\dfrac{6}{12}\\ =\dfrac{21}{12}=\dfrac{7}{4}\\ b)-\dfrac{5}{12}+0,75\\ =-\dfrac{5}{12}+\dfrac{3}{4}\\ =\dfrac{-5}{12}+\dfrac{9}{12}\\ =\dfrac{4}{12}=\dfrac{1}{3}\\ c)\dfrac{15}{12}+\dfrac{5}{13}-\left(\dfrac{3}{12}+\dfrac{18}{13}\right)\\ =\dfrac{15}{12}+\dfrac{5}{13}-\dfrac{3}{12}-\dfrac{18}{13}\\ =\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\\ =\dfrac{12}{12}-\dfrac{13}{13}\\ =1-1=0\)

2: a: \(-\dfrac{16}{42}-\dfrac{5}{8}=\dfrac{-64}{168}-\dfrac{105}{168}=\dfrac{-169}{168}\)

b: \(3,5-\left(-\dfrac{2}{7}\right)=3,5+\dfrac{2}{7}=\dfrac{7}{2}+\dfrac{2}{7}=\dfrac{7^2+2^2}{14}=\dfrac{53}{14}\)

c: \(\left(-\dfrac{1}{2}+\dfrac{3}{4}\right)-\left(-\dfrac{4}{5}+\dfrac{5}{6}\right)\)

\(=\dfrac{-1}{2}+\dfrac{3}{4}+\dfrac{4}{5}-\dfrac{5}{6}\)

\(=\dfrac{-30}{60}+\dfrac{45}{60}+\dfrac{48}{60}-\dfrac{50}{60}\)

\(=\dfrac{15}{60}-\dfrac{2}{60}=\dfrac{13}{60}\)

3:

a: \(\dfrac{2}{21}-\dfrac{-1}{28}=\dfrac{2}{21}+\dfrac{1}{28}=\dfrac{8}{84}+\dfrac{3}{84}=\dfrac{11}{84}\)

b: \(-4.75-1\dfrac{7}{12}=-\dfrac{57}{12}-\dfrac{19}{12}=-\dfrac{76}{12}=-\dfrac{19}{3}\)

c: \(-\left(\dfrac{3}{5}+\dfrac{5}{4}\right)-\left(-\dfrac{3}{4}+\dfrac{2}{5}\right)\)

\(=-\dfrac{3}{5}-\dfrac{5}{4}+\dfrac{3}{4}-\dfrac{2}{5}\)

\(=-1-\dfrac{2}{4}=-\dfrac{3}{2}\)

4:

a: \(-\dfrac{2}{33}+\dfrac{5}{55}=\dfrac{-10}{165}+\dfrac{15}{165}=\dfrac{5}{165}=\dfrac{1}{33}\)

b: \(0,4+\left(-2\dfrac{4}{5}\right)=0,4-2,8=-2,4\)

c: \(-\left(\dfrac{3}{7}+\dfrac{3}{8}\right)-\left(-\dfrac{3}{8}+\dfrac{4}{7}\right)\)

\(=\dfrac{-3}{7}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{7}\)

\(=-\dfrac{3}{7}-\dfrac{4}{7}=-\dfrac{7}{7}=-1\)

7 tháng 7 2024

\(10x^2+y^2+4z^2+6x-4y-4xz=-5\\ =>10x^2+y^2+4z^2+6x-4y-4xz+5=0\\ =>\left(9x^2+6x+1\right)+\left(x^2-4xz+4z^2\right)+\left(y^2-4y+4\right)=0\\ =>\left(3x+1\right)^2+\left(x-2z\right)^2+\left(y-2\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(3x+1\right)^2\ge0\forall x\\\left(x-2z\right)^2\ge0\forall x,z\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.=>\left(3x+1\right)^2+\left(x-2z\right)^2+\left(y-2\right)^2\ge0\forall x,y,z\) 

\(=>\left\{{}\begin{matrix}3x+1=0\\x-2z=0\\y-2=0\end{matrix}\right.=>\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\z=-\dfrac{1}{6}\\y=2\end{matrix}\right.\)

7 tháng 7 2024

\(10x^2+y^2+4z^2+6x-4y-4xz=-5\\ \Leftrightarrow\left(x^2-4xz+4z^2\right)+\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(x-2z\right)^2+\left(3x+1\right)^2+\left(y-2\right)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2z\right)^2\ge0\forall x,z\\\left(3x+1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2z\right)^2+\left(3x+1\right)^2+\left(y-2\right)^2\ge0\forall x,y,z\)

Mà: \(\left(x-2z\right)^2+\left(3x+1\right)^2+\left(y-2\right)^2=0\)

Do đó: \(\left\{{}\begin{matrix}x-2z=0\\3x+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=2\\z=-\dfrac{1}{6}\end{matrix}\right.\)

#$\mathtt{Toru}$

 

Bài 3: Gọi H là giao điểm của CD với AB

\(\widehat{HCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

=>\(\widehat{HCB}+143^0=180^0\)

=>\(\widehat{HCB}=180^0-143^0=37^0\)

Xét ΔHCB có \(\widehat{HCB}+\widehat{HBC}=37^0+53^0=90^0\)

nên ΔHCB vuông tại H

=>CD\(\perp\)AB tại H

Bài 2:

a: Ta có: \(\widehat{DAB}=\widehat{xAM}\)(hai góc đối đỉnh)

mà \(\widehat{xAm}=124^0\)

nên \(\widehat{DAB}=124^0\)

Ta có: \(\widehat{DAB}+\widehat{ABC}=124^0+56^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AD//BC

=>xy//zt

b: xy//zt

=>\(\widehat{BCD}+\widehat{ADC}=180^0\)(hai góc trong cùng phía)

=>\(\widehat{BCD}+90^0=180^0\)

=>\(\widehat{BCD}=90^0\)

Ak là phân giác của góc DAB

=>\(\widehat{DAC}=\dfrac{124^0}{2}=62^0\)

ΔDAC vuông tại D

 

=>\(\widehat{DAC}+\widehat{DCA}=90^0\)

=>\(\widehat{DCA}+62^0=90^0\)

=>\(\widehat{DCA}=28^0\)