tìm x là số nguyên 3x+5/x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2=\dfrac{25}{4}\)
\(\Rightarrow\left(2x+1\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)
+) \(2x+1=\dfrac{5}{2}\)
\(\Rightarrow2x=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{4}\)
+) \(2x+1=-\dfrac{5}{2}\)
\(\Rightarrow2x=-\dfrac{7}{2}\)
\(\Rightarrow x=-\dfrac{7}{4}\)
(2x + 1)² = 25/4
2x + 1 = 5/2 hoặc 2x + 1 = -5/2
*) 2x + 1 = 5/2
2x = 5/2 - 1
2x = 3/2
x = 3/2 : 2
x = 3/4
*) 2x + 1 = -5/2
2x = -5/2 - 1
2x = -7/2
x = -7/2 : 2
x = -7/4
Vậy x = -7/4; x = 3/4
1/2 . 2ⁿ⁺⁴ . 2 = 2⁵⁴
2ⁿ⁺⁴⁺ⁿ = 2⁵⁴ . 2
2²ⁿ⁺⁴ = 2⁵⁵
2n + 4 = 55
2n = 55 - 4
2n = 51
n = 51/2
a) Diện tích xung quanh bể:
(50 + 90) . 2 . 80 = 22400 (cm²)
Thể tích bể:
50 . 90 . 80 = 360000 (cm³)
b) 0,2 m = 20 cm
Thể tích nước đã bơm vào bể:
50 . 90 . (80 - 20) = 270000 (cm³) = 27 (m³)
diện tích xung quanh của bể là
\([\)(90+50) x2\(]\) x 80 = 22400 cm2
thể tích bể là
90 x 50 x 80 =360000 cm3
đổi 0,2 m = 20 cm
chiều co của bể khi bơm nước xong là
80 - 20 = 60 cm
thể tích nước đã bơm vào bể là
90 x 50 x 60 =270000 cm3
(\(\dfrac{12}{25}\))\(^x\) = (\(\dfrac{5}{3}\))-2 - (-\(\dfrac{3}{5}\))4
(\(\dfrac{12}{25}\))\(x\) = (\(\dfrac{3}{5}\))2 - (\(\dfrac{3}{5}\))4
(\(\dfrac{12}{25}\))\(^x\) = \(\dfrac{9}{25}\) - \(\dfrac{81}{625}\)
(\(\dfrac{12}{25}\))\(^x\) = \(\dfrac{144}{625}\)
(\(\dfrac{12}{25}\))\(^x\) = (\(\dfrac{12}{25}\))2
\(x\) = 2
(12/25)ˣ = (5/3)⁻² - (-3/5)⁴
(12/25)ˣ = 9/25 - 81/625
(12/25)ˣ = 144/625
(12/25)ˣ = (12/25)²
x = 2
a) 1/20 - (x - 8/5) = 1/10
x - 8/5 = 1/20 - 1/10
x - 8/5 = -1/20
x = -1/20 + 8/5
x = 31/20
b) 7/4 - (x + 5/3) = -12/5
x + 5/3 = 7/4 + 12/5
x + 5/3 = 83/20
x = 83/20 - 5/3
x = 149/60
c) x - [17/2 - (-3/7 + 5/3)] = -1/3
x - (17/2 - 26/21) = -1/3
x - 305/42 = -1/3
x = -1/3 + 305/42
x = 97/14
a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)
\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)
\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{49}{10}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)
+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)
\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{13}{15}\)
+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)
\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)
\(\Rightarrow x=\dfrac{125}{16}\)
a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)
\(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)
\(x\). \(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)
\(x\) = - \(\dfrac{49}{60}\).6
\(x\) = -\(\dfrac{49}{10}\)
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)
\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)
\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)
\(A=1-\dfrac{1}{2^{100}}\)
b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}\)
\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)
\(=\dfrac{2023}{2024}\)
\(\dfrac{3x+5}{x-1}=\dfrac{3x-3+8}{x-1}=\dfrac{3\left(x-1\right)+8}{x-1}\)
\(=\dfrac{3\left(x-1\right)}{x-1}+\dfrac{8}{x-1}=3+\dfrac{8}{x-1}\)
Biểu thức nguyên khi \(\dfrac{8}{x-1}\) nguyên
⇒ 8 ⋮ x - 1
⇒ x - 1 ∈ Ư(8)
⇒ x - 1 ∈ {1; -1; 2; -2; 4; -4; 8; -8}
⇒ x ∈ {2; 0; 3; -1; 5; -3; 9; -7}