K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

Đổi 50 cm=0,5m
Khoảng cách ngọn cây cách mặt nước là:
1,2+0,5=1,7(m)
Khoảng cách ngọn cây cách ảnh của nó là:
1,7x2=3,4(m)
Đáp số: 3,4 m
Bạn tham khảo nhé mình không biết có đúng hay không nữa!:p:p

5 tháng 3 2020

Cách vẽ hình:

- tia tới hợp với tia phản xạ 1 góc 13001300, tức là góc tới (i) + góc phản xạ(i') là bằng 13001300

mà ta đã biết góc tới (i) =góc phản xạ(i')

==> 13002=65013002=650

góc tới i= 650650

góc phản xạ i'= 650650

góc tạo bởi gương phẳng:

900−650=250

5 tháng 3 2020

Đổi 50 cm = 0,5 m
Khoảng cách ngọn cây cách mặt nước là:
1,2 + 0,5 = 1,7 (m)
Khoảng cách ngọn cây cách ảnh của nó là:
1,7 x 2 = 3,4 (m)
Đáp số: 3,4 m

5 tháng 3 2020

Đổi 50 cm=0,5m
Khoảng cách ngọn cây cách mặt nước là:
1,2+0,5=1,7(m)
Khoảng cách ngọn cây cách ảnh của nó là:
1,7x2=3,4(m)
Đáp số: 3,4 m
Bạn tham khảo nhé mình không biết có đúng hay không nữa!:p:p

5 tháng 3 2020

Ta có : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-99}{100^2}=-\frac{3.8.15...9999}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)

\(=-\frac{101}{100.2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

5 tháng 3 2020

đúng đó bạn

5 tháng 3 2020

quãng đường âm truyền từ tàu ngầm đến tận cùng đáy biển và phản xạ lại là

S=T.V= 1500.1=1500 (m)

độ sâu của đáy biển tính từ tàu ngầm dài

1500:2= 750 (m)

vậy độ sâu đáy biển tính từ tàu ngầm là 750 m

16 tháng 12 2020

tại sao chia 2

 

5 tháng 3 2020

1 2 1 2 1 2 A M N B C I

a,Xét tam giác ABN và tam giác ACM có :

AM=AN (gt)

Góc A chung 

AB=AC(gt)

=> tam giác ABN = tam giác ACM (c-g-c)

b,theo câu a =>AMC^=ANB^(1)

Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)

Từ 1 và 2 =>MNI^=NMI^(3)

Vì B1^=C1^

B^=C^

=>B^-B1^=C-C1^

=>C2^=B2^(4)

Mặt khác : I1^=I2^(đối đỉnh) (5)

Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )

=> MNI^+NMI^ / 2 = B2^+C2^ / 2

=> B2^=MNI^

Vì 2 góc này ở vị trí sole trong  và bằng nhau 

=> MN // BC

P/s : Nhờ check hộ ạ =))

6 tháng 3 2022

câu c là dòng nào ạ?

 

5 tháng 3 2020

Nếu x=3 thì y= -2. Ta được điểm A(3;-2) thuộc đths

Nếu y=0 thì x=0. ta được điểm B(0;0) thuộc đths

Vẽ đường thẳng đi qua hai điểm này là được đths \(y=\frac{-2}{3}x\)

5 tháng 3 2020

hình tự vẽ:

xét tam giác ABC cân tại A

=> AB=AC( t/c tam giác cân)

=> ^B=^C( t/c tam giác cân)

có : ^DBC=^DBA( GT)

     ^ACE=^BCE(GT)

    ^B=^C(CMT)

=>^DBC=^ECB

=> ^ABD=^ACE

xét tam giác BEC và tam giác DBC

^DBC=^ECB(CMT)

BC-CẠNH CHUNG

^EBC=^DCB(CMT)

=> tam giác BEC = tam giác DBC (G.C.G)

=> BE=DC(2c t ứ)

b)AB=AC ( CMT)

BE=DC

=>AB-BE=AC-DC

=>AE=AD

=> tam giác AED cân tại A ( đ/n)

=> ^AED =^ADE

c)

AK-PG Â

AK CẮT ED TẠI H

Xét △AEH và △ADH có:

AD=AE (CMT)

∠A1=∠A2 ( tia phân giác AH của A)

Cạnh AH chung

⇒△AEH=△ADH (c.g.c)

⇒∠H1=∠H2 ( 2 góc tương ứng )

Mà ∠H1+∠H2=180 ( kề bù )

⇒∠H1=∠H2=18021802=90

⇒AH⊥ED (1)

Xét △ABK và △ACK có :

AB=AC (gt)

∠A1=∠A2 (CMT)

Cạnh AK chung

⇒△ABK=△ACK (c.g.c)

⇒∠K1=∠K2 ( 2 góc tương ứng )

Mà ∠K1+∠K2=180

⇒∠K1=∠K2=18021802=90

⇒AK⊥BC (2)

Từ (1) và (2) ⇒ ED song song với BC

⇒∠D2=∠B2 ( 2 góc so le trong )

Mà ∠B1=∠B2

⇒∠D2=∠B1

⇒△BED cân tại E

⇒EB=ED

Mà EB = CD

⇒EB=ED=CD

21 tháng 4 2020

A B C K M O E H P

21 tháng 4 2020

a ) a.Vì P∈Trung trực của BC

\(\Rightarrow PB=PC\)

Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)

Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)

\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)

\(\Rightarrow BH=CK\)

b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)

\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)

\(\Rightarrow AH=AK\)

\(\Rightarrow\Delta AHK\) cân tại A 

Mà AP là phân giác ^A 

\(\Rightarrow AP\perp HK\)

Qua B kẻ BE // AK , \(E\in HK\)

\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)

Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)

\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)

Mà \(BH=CK\Rightarrow BE=CK\)

Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)

Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)

\(\Rightarrow\widehat{BME}=\widehat{KMC}\)

\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)

\(\Rightarrow E,M,K\) thẳng hàng 

\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng 

c ) Do \(PA\perp HK\) ( câu a ) 

\(\Rightarrow AP\perp HK=O\)

Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK

\(\Rightarrow OH=OK\)

\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)

                                                                 \(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)

                                                                    \(=AH^2+PH^2\)

                                                                    \(=AP^2,\left(PH\perp AB\right)\)