cho tia tới SI hợp vs tia phản xạ 1 góc 130 độ. Nếu cách vẽ hình, tính góc tới, góc phản xạ,góc tạo bởi tia tới và gương
lý 7
3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 50 cm = 0,5 m
Khoảng cách ngọn cây cách mặt nước là:
1,2 + 0,5 = 1,7 (m)
Khoảng cách ngọn cây cách ảnh của nó là:
1,7 x 2 = 3,4 (m)
Đáp số: 3,4 m
Đổi 50 cm=0,5m
Khoảng cách ngọn cây cách mặt nước là:
1,2+0,5=1,7(m)
Khoảng cách ngọn cây cách ảnh của nó là:
1,7x2=3,4(m)
Đáp số: 3,4 m
Bạn tham khảo nhé mình không biết có đúng hay không nữa!
Ta có : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-99}{100^2}=-\frac{3.8.15...9999}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=-\frac{101}{100.2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
quãng đường âm truyền từ tàu ngầm đến tận cùng đáy biển và phản xạ lại là
S=T.V= 1500.1=1500 (m)
độ sâu của đáy biển tính từ tàu ngầm dài
1500:2= 750 (m)
vậy độ sâu đáy biển tính từ tàu ngầm là 750 m
1 2 1 2 1 2 A M N B C I
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
P/s : Nhờ check hộ ạ =))
Nếu x=3 thì y= -2. Ta được điểm A(3;-2) thuộc đths
Nếu y=0 thì x=0. ta được điểm B(0;0) thuộc đths
Vẽ đường thẳng đi qua hai điểm này là được đths \(y=\frac{-2}{3}x\)
hình tự vẽ:
xét tam giác ABC cân tại A
=> AB=AC( t/c tam giác cân)
=> ^B=^C( t/c tam giác cân)
có : ^DBC=^DBA( GT)
^ACE=^BCE(GT)
^B=^C(CMT)
=>^DBC=^ECB
=> ^ABD=^ACE
xét tam giác BEC và tam giác DBC
^DBC=^ECB(CMT)
BC-CẠNH CHUNG
^EBC=^DCB(CMT)
=> tam giác BEC = tam giác DBC (G.C.G)
=> BE=DC(2c t ứ)
b)AB=AC ( CMT)
BE=DC
=>AB-BE=AC-DC
=>AE=AD
=> tam giác AED cân tại A ( đ/n)
=> ^AED =^ADE
c)
AK-PG Â
AK CẮT ED TẠI H
Xét △AEH và △ADH có:
AD=AE (CMT)
∠A1=∠A2 ( tia phân giác AH của A)
Cạnh AH chung
⇒△AEH=△ADH (c.g.c)
⇒∠H1=∠H2 ( 2 góc tương ứng )
Mà ∠H1+∠H2=180 ( kề bù )
⇒∠H1=∠H2=18021802=90
⇒AH⊥ED (1)
Xét △ABK và △ACK có :
AB=AC (gt)
∠A1=∠A2 (CMT)
Cạnh AK chung
⇒△ABK=△ACK (c.g.c)
⇒∠K1=∠K2 ( 2 góc tương ứng )
Mà ∠K1+∠K2=180
⇒∠K1=∠K2=18021802=90
⇒AK⊥BC (2)
Từ (1) và (2) ⇒ ED song song với BC
⇒∠D2=∠B2 ( 2 góc so le trong )
Mà ∠B1=∠B2
⇒∠D2=∠B1
⇒△BED cân tại E
⇒EB=ED
Mà EB = CD
⇒EB=ED=CD
a ) a.Vì P∈Trung trực của BC
\(\Rightarrow PB=PC\)
Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)
Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)
\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)
\(\Rightarrow BH=CK\)
b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)
\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)
\(\Rightarrow AH=AK\)
\(\Rightarrow\Delta AHK\) cân tại A
Mà AP là phân giác ^A
\(\Rightarrow AP\perp HK\)
Qua B kẻ BE // AK , \(E\in HK\)
\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)
Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)
\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)
Mà \(BH=CK\Rightarrow BE=CK\)
Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)
Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BME}=\widehat{KMC}\)
\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)
\(\Rightarrow E,M,K\) thẳng hàng
\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng
c ) Do \(PA\perp HK\) ( câu a )
\(\Rightarrow AP\perp HK=O\)
Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK
\(\Rightarrow OH=OK\)
\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)
\(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)
\(=AH^2+PH^2\)
\(=AP^2,\left(PH\perp AB\right)\)
Đổi 50 cm=0,5m
Khoảng cách ngọn cây cách mặt nước là:
1,2+0,5=1,7(m)
Khoảng cách ngọn cây cách ảnh của nó là:
1,7x2=3,4(m)
Đáp số: 3,4 m
Bạn tham khảo nhé mình không biết có đúng hay không nữa!
Cách vẽ hình:
- tia tới hợp với tia phản xạ 1 góc 13001300, tức là góc tới (i) + góc phản xạ(i') là bằng 13001300
mà ta đã biết góc tới (i) =góc phản xạ(i')
==> 13002=65013002=650
góc tới i= 650650
góc phản xạ i'= 650650
góc tạo bởi gương phẳng:
900−650=250