Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với BC cắt đường thẳng AB, AC tại E và D
a) Tính AM ?
b) Tam giác BEC cân
Bài 2: Cho tam giác ABC vuông tại A, phân giác BE, kẻ EH vuông góc với BC ( H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh BE là đường trung trực của AH.
1:
a: \(BC=\sqrt{6^2+8^2}=10cm\)
=>AM=10/2=5cm
b: Xét ΔEBC có
EM vừa là đường cao, vừa là trung tuyến
=>ΔEBC cân tại E
Bài 2:
Xét ΔBAE vuông tại A và ΔBHE vuông tại H co
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH