K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{120}{2}\right)=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{1}{2}=\dfrac{AB\cdot AC}{AB+AC}\)

=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)

b:  \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot AB\cdot AC\sqrt{2}}{2\left(AB+AC\right)}=\dfrac{AB\cdot AC\cdot\sqrt{2}}{AB+AC}\)

=>\(\dfrac{1}{AD}=\dfrac{AB+AC}{AB\cdot AC}\cdot\dfrac{1}{\sqrt{2}}\)

=>\(\dfrac{\sqrt{2}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)

c: \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{60}{2}\right)\)

=>\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos30=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot\dfrac{\sqrt{3}}{2}\)

=>\(\dfrac{AD}{\sqrt{3}}=\dfrac{AB\cdot AC}{AB+AC}\)

=>\(\dfrac{\sqrt{3}}{AD}=\dfrac{AB+AC}{AB\cdot AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\)

2 tháng 7

Chúng đều được định nghĩa dựa trên các cạnh của tam giác vuông và góc nhọn trong tam giác đó. Sin: Tỷ số giữa cạnh đối diện với góc nhọn và cạnh huyền của tam giác vuông. Cos: Tỷ số giữa cạnh kề với góc nhọn và cạnh huyền của tam giác vuông. Tan: Tỷ số giữa cạnh đối diện và cạnh kề của góc nhọn trong tam giác vuông.

2 tháng 7

@ ánh lê Copy phải ghi Tk nhé!

Tk = Tham khảo

1 tháng 7

<=> \(\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\) + 2 ≤ 0

<=> \(\dfrac{\sqrt{x}+3+2\sqrt{x}-2}{\sqrt{x}-1}\) ≤ 0

<=> \(\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\) ≤ 0

Mà ( \(3\sqrt{x}\) + 1 ) > 0

=> \(\sqrt{x}-1\) < 0

=> \(\sqrt{x}\) < 1

=> x ϵ [ 0 , 1 )

 

ĐKXĐ: x>=0

\(\dfrac{2\sqrt{x}-6}{x-\sqrt{x}+1}< 0\)

mà \(x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\) thỏa mãn ĐKXĐ

nên \(2\sqrt{x}-6< 0\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

 

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-2\\y\ne-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2x}{x+2}-\dfrac{3y}{y+1}=-4\\\dfrac{x}{x+2}+\dfrac{2y}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2x+4-4}{x+2}-\dfrac{3y+3-3}{y+1}=-4\\\dfrac{x+2-2}{x+2}+\dfrac{2y+2-2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{4}{x+2}-3+\dfrac{3}{y+1}=-4\\1-\dfrac{2}{x+2}+2-\dfrac{2}{y+1}=\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{4}{x+2}+\dfrac{3}{y+1}=-4-2+3=-6+3=-3\\-\dfrac{2}{x+2}-\dfrac{2}{y+1}=\dfrac{1}{3}-3=-\dfrac{8}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}=-3\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-4}{x+2}+\dfrac{3}{y+1}+\dfrac{4}{x+2}+\dfrac{4}{y+1}=-3+\dfrac{16}{3}\\\dfrac{-4}{x+2}-\dfrac{4}{y+1}=-\dfrac{16}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{7}{y+1}=\dfrac{7}{3}\\\dfrac{1}{x+2}+\dfrac{1}{y+1}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+1=3\\\dfrac{1}{x+2}=\dfrac{4}{3}-\dfrac{1}{3}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2\\x=-1\end{matrix}\right.\left(nhận\right)\)

ĐKXĐ: x<>-2

\(\dfrac{x-3}{x+2}>=0\)

TH1: \(\left\{{}\begin{matrix}x-3>=0\\x+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\x>-2\end{matrix}\right.\)

=>x>=3

TH2: \(\left\{{}\begin{matrix}x-3< =0\\x+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\x< -2\end{matrix}\right.\)

=>x<-2

1 tháng 7

\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\\ =\left(\sqrt{5}+2\right)+\left(\sqrt{3}+1\right)-\left(\sqrt{5}+\sqrt{3}\right)\\ =\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}\\ =2+1=3\)

1 tháng 7

\(\sqrt{\dfrac{9}{4}}-\sqrt{2}+\sqrt{2}\\ =\dfrac{3}{2}-\left(\sqrt{2}-\sqrt{2}\right)\\ =\dfrac{3}{2}-0\\ =\dfrac{3}{2}\)

1 tháng 7

\(H=\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\sqrt{3}\\ =\dfrac{4\left(1+\sqrt{3}\right)}{-2}-\sqrt{3}\\ =-2\left(1+\sqrt{3}\right)-\sqrt{3}\\ =-2-2\sqrt{3}-\sqrt{3}\\ =-2-3\sqrt{3}\)

1 tháng 7

Cảm ơn bạn nhé

1 tháng 7

Tam giác ABC vuông tại A ta có:

\(tanB=\dfrac{AC}{AB}=>\dfrac{5}{12}=\dfrac{AC}{6}=>AC=\dfrac{5\cdot6}{12}=\dfrac{5}{2}\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\\ =>BC=\sqrt{AB^2+AC^2}\\ =>BC=\sqrt{6^2+\left(\dfrac{5}{2}\right)^2}=\dfrac{13}{2}\left(cm\right)\)

Để giải bài toán, ta cần sử dụng một số công thức và định lý trong hình học, đặc biệt là định lý Pythagore và định nghĩa của các hàm số lượng giác.

Cho tam giác ABC vuông tại A, với AB = 6 cm và tanα = 5/12. Góc B = α.

a) Tính độ dài cạnh AC

Vì tam giác vuông tại A, góc α là góc B, ta có:

tan⁡(α)=đoˆˊi diệnkeˆˋ\tan(\alpha) = \frac{\text{đối diện}}{\text{kề}}

Trong tam giác ABC vuông tại A:

tan⁡(α)=BCAC\tan(\alpha) = \frac{BC}{AC}

Theo đề bài, tan⁡(α)=512\tan(\alpha) = \frac{5}{12}.

Do đó, ta có:

BCAC=512\frac{BC}{AC} = \frac{5}{12}

Từ đó suy ra:

BC=512ACBC = \frac{5}{12} AC

b) Tính độ dài cạnh BC

Ta sử dụng định lý Pythagore cho tam giác ABC vuông tại A:

BC2=AB2+AC2BC^2 = AB^2 + AC^2

Đầu tiên, ta cần tính AC.

Biết rằng tan⁡(α)=512\tan(\alpha) = \frac{5}{12}, do đó ta có:

sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2} sin⁡(α)=BCBC2+AC2\sin(\alpha) = \frac{BC}{BC^2 + AC^2}

Vì tan(α) = 5/12 nên ta đặt BC = 5k và AC = 12k. Vì thế:

BC=5kBC = 5k

AC=12kAC = 12k

Sử dụng định lý Pythagore:

BC2=AB2+AC2BC^2 = AB^2 + AC^2

(5k)2=AB2+(12k)2(5k)^2 = AB^2 + (12k)^2

25k2=62+144k225k^2 = 6^2 + 144k^2

25k2=36+144k225k^2 = 36 + 144k^2

Từ đó, ta có:

AC=12k5AC = \frac{12k}{5}

AC2=AB2+BC2AC^2 = AB^2 + BC^2

(12k)2=62+(5k)2(12k)^2 = 6^2 + (5k)^2

144k2=36+25k2144k^2 = 36 + 25k^2

144k2−25k2=36144k^2 - 25k^2 = 36

119k2=36119k^2 = 36

k2=36119k^2 = \frac{36}{119}

k=36119k = \sqrt{\frac{36}{119}}

k=6119k = \frac{6}{\sqrt{119}}

BC=5k=5×6119=30119BC = 5k = 5 \times \frac{6}{\sqrt{119}} = \frac{30}{\sqrt{119}}

AC=12k=12×6119=72119AC = 12k = 12 \times \frac{6}{\sqrt{119}} = \frac{72}{\sqrt{119}}

Chúng ta có thể tính toán lại bằng cách:

Suy ra: BC=512ACBC = \frac{5}{12} AC AC=12×65=14.4AC = \frac{12 \times 6}{5} = 14.4 BC=5×1.2=6BC = 5 \times 1.2 = 6

Suy ra:...