Tìm các số nguyên tố p thỏa mãn : 5^2p + 2013 = 5^2p^2 + q^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3,6-4,8\right)-\left(-4,4+3,6-4,8\right)\)
<=> 3,6 - 4,8 + 4,4 - 3,6 + 4,8
<=> 4,4
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm
a) Để A là phân số tồn tại thì: n + 2 khác 0
=> n khác -2
Vậy để A là phân số tồn tại thì n thuộc Z = { -2 }
b) Ta có: n = -2 thì
A = -7/-2 + 2 = -7/0 ( vô lí vì theo đk thoả mãn )
Ta có: n = -4 thì
A = -7/-4+2 = -7/-2 = 7/2
Ta có: n = 12 thì
A = -7/12+2 = -7/14 = -1/2
Vậy khi n = -2 thì A không tồn tại
n = -4 thì A = 7/2
n = 12 thì A = -1/2
c) Để A là số nguyên
<=> -7 phải chia hết cho n + 2
<=> n + 2 thuộc Ư(-7) = { 1;-1;7;-7 }
Ta có: Khi n + 2 = 1 => n = -1
Khi n + 2 = -1 => n = -3
Khi n + 2 = 7 => n = 5
Khi n + 2 = -7 => n = -9
Vậy để A là số nguyên thì n = { -1;-3;5;-9}
![](https://rs.olm.vn/images/avt/0.png?1311)
O B A C O'
Lấy điểm O' sao cho \(OB\perp O'B;OB=O'B\)( O' cùng phía với C so với OB)=> O' cố định
Khi đó góc OBA = Góc O'BC( cùng phụ góc ABO')
=> \(\Delta BOA=\Delta BO'C\)( cạnh.góc.canh)
=> \(O'C=OA=1\)
Mà O' cố định
=> C thuộc đường tròn tâm O' BK=1 cố định
Để OC lớn nhất thì
C là giao của OO' với đường tròn tâm O' (C nằm ngoài OO')
ÁP dụng PItago ta có \(OO'=\sqrt{2}\)
=> \(OC=OO'+O'C=1+\sqrt{2}\)
Vậy \(MaxOC=1+\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E I H
a) Xét △BEC và △BED có :
BD = BC (gt)
^EBC = ^EBD (gt)
BE chung
\(\Rightarrow\)△BEC = △BED (c.g.c)
b) Xét △BIC và △BID có :
BC = BD (gt)
^IBC = ^IBD (gt)
BI chung
\(\Rightarrow\)△BIC = △BID (c.g.c)
\(\Rightarrow\)ID = IC (cặp cạnh tương ứng)
c) Xét △BDC cân tại B có BI là phân giác góc B
\(\Rightarrow\)BI đồng thời là đường cao của △BDC
\(\Rightarrow\)BI ⊥ DC
Mà AH // DC
\(\Rightarrow\)BI ⊥ AH (ĐPCM)
Ta có : \(5^{2p}+2013=5^{2p^2}+q^2\)
\(\iff\) \(2013-q^2=25^{p^2}-25^p\)
\(\iff\) \(2013-q^2=25^p.\left(25^{p^2-p}-1\right)\)
Vì \(p\) là số nguyên tố nên suy ra :\(2013-q^2\) chia hết cho \(25^2\) và \(2013-q^2>0\) nên suy ra : \(q^2< 2013\)
\(\iff\) \(q< \sqrt{2013}< \sqrt{2025}=45\)
\(\iff\) \(q< 45\)
Ta có : \(2013-q^2\) chia hết cho \(25^2\)
\(\iff\) \(3.625+138-q^2\) chia hết cho \(25^2\)
\(\iff\) \(138-q^2\) chia hết cho \(25^2\)
Mà \(138-q^2\) \( \leq\) \(138\) không chia hết cho \(25^2\) nên suy ra : Không có giá trị \(q\) nào thỏa mãn