K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

Thay 5 = x + y vào ta có:

\(\frac{2x-x-y}{x-y}+\frac{3x+x+y}{4x+y}=\frac{x-y}{x-y}+\frac{4x+y}{4x+y}=1+1=2\)

16 tháng 3 2020

Thay \(5=x+y\)vào ta có :

\(\frac{2x-x-y}{x-y}+\frac{3x+x+y}{4x+y}\)

\(=\frac{x-y}{x-y}+\frac{4+y}{4x+y}\)

\(=1+1\)

\(=2\)

16 tháng 3 2020

a, xét tam giác DCB và tam giác EBC có : BC chung

^ABC = ^ACB do tam giác ABC cân tại A (gt)

^CDB = ^BEC = 90

=> tam giác DCB = tam giác EBC (ch-gn)

=> BD = CE (đn)

b, tam giác DCB = tam giác EBC (câu a)

=> ^OCB = ^OBC (đn)

=> tam giác OBC cân tại O (đn)

=> OB = OC

xét tam giác ODC và tam giác OEB có : ^DOC = ^EOB (đối đỉnh)

^ODC = ^OEB = 90

=> Tam giác ODC = tam giác OEB (ch-gn)

c, 

tam giác DCB = tam giác EBC (câu a)

=> ^OCB = ^OBC (đn)

^ABC = ^ACB (câu a)

^DCO + ^OCB = ^ACB

^EBO + ^OBC = ^ABC

=> ^DCO = ^EBO 

xét tam giác ACO và tam giác ABO có : AB = AC (gt)

OC = OB (câu b)

=> tam giác ACO = tam giác ABO (c-g-c)

=> ^CAO = ^BAO mà AO nằm giữa AB và AC 

=> AO là pg của ^BAC (đn)

16 tháng 3 2020

Sửa đề: Cho tam giác ABC cân tại A, ...

Hình vẽ:

A B C E 1 2

a) Xét \(\Delta ABE\)và \(\Delta ACE\)có:

AB = AC ( tam giác ABC cân tại A )

BE = EC ( do E là trung điểm BC )

AE là cạnh chung

=> \(\Delta ABE=\Delta ACE\left(c.c.c\right)\)

b) Vì \(\Delta ABE=\Delta ACE\left(cmt\right)\)

=> \(\widehat{A_1}=\widehat{A_2}\)( 2 góc tương ứng)

=> AE là tia phân giác góc BAC

17 tháng 3 2020

câu a, b thì làm dc rồi còn câu c, d nũa :v

12 tháng 1 2021

\(2xy+4x-3y-6=0\)

\(\Leftrightarrow2x\left(y+2\right)-3\left(y+2\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(y+2\right)=0\)

Đẳng thức xảy ra <=> x = 3/2 ; y = -2

19 tháng 3 2020

A A A B B B C C C D D D M M M E E E 1 2 1 2

Để chứng minh D nằm giữa B và M,ta sẽ chứng minh BD < BM(đã biết D thuộc tia BM).Muốn vậy cần chứng minh \(BD< \frac{1}{2}BC\),tức là BD < DC

Ta chuyển BD và DC thành hai cạnh của một tam giác .Trên cạnh AC lấy điểm E sao cho AE = AB

Xét \(\Delta\)ABD và \(\Delta\)AED có :

AB = AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)

AD cạnh chung

=> \(\Delta\)ABD = \(\Delta\)AED(c.g.c)

=> BD = ED,\(\widehat{B_1}=\widehat{E_1},\widehat{B_2}=\widehat{E_2}\)

Do \(\widehat{B_2}>\widehat{C}\left(\Delta ABC\right)\Rightarrow\widehat{E_2}>\widehat{C}\),do đó DC > ED

Vậy DC > BD.Từ đó suy ra \(BD< \frac{1}{2}BC\)và D nằm giữa B và M.

16 tháng 3 2020

a,+) Lấy N sao cho : O là trung điểm của CN ; lấy M sao cho : OM là trung trực của BC

\(\implies\) OM là đường trung bình của tam giác CNB 

\(\implies\) OM song song với NB ; OM = \(\frac{1}{2}\) NB 

Ta có : OM vuông góc với BC \(\implies\) NB vuông góc với BC mà AH vuông góc với BC

\(\implies\) NB song song với AH ( 1 )

+) Lấy S sao cho : OS là trung trực của AC ; mà O là trung điểm của NC 

\(\implies\) OS là đường trung bình của tam giác NAC

\(\implies\) OS song song với AN ; OS = \(\frac{1}{2}\) AN

Ta có : OS vuông góc với AC \(\implies\) NA vuông góc với AC mà BH vuông góc với AC 

\(\implies\) NA song song với BH ( 2 )

Từ ( 1 ) ; ( 2 )

 \(\implies\) NAHB là hình bình hành 

 \(\implies\) NB = AH ( 3 )

Mà OM = \(\frac{1}{2}\) NB \(\implies\) 2OM = NB ( 4 )

Từ ( 3 ) ; ( 4 ) 

\(\implies\) AH = 2OM ( đpcm )

b, Ta có : A ; G ; M thẳng hàng ( M là trung điểm của BC ; G là trọng tâm )

 GM = \(\frac{1}{3}\) AM \(\implies\) AG = 2GM 

 Gọi I ; K lần lượt là trung điểm của HG ; AG 

\(\implies\) IK là đường trung bình của tam giác HGA 

\(\implies\) IK song song với AH ; IK = \(\frac{1}{2}\) AH

+) NB song song OM , mà NB song song với AH 

\(\implies\) AH song song với OM 

+) AH song song với OM , mà IK song song với AH 

\(\implies\) IK song song với OM

\(\implies\) IKG = GMO ( 2 góc so le trong )

+) IK = \(\frac{1}{2}\) AH , mà AH = 2OM

\(\implies\) IK = OM 

+) K là trung điểm của AG

\(\implies\) KA = KG = \(\frac{AG}{2}\)

Mà AG = 2GM \(\implies\) KA = KG = GM \(\implies\) KG = GM

+)Xét tam giác KIG và tam giác MOG có :

 KG = GM 

 IKG = GMO ( cmt )

 OM = KI 

\(\implies\) tam giác KIG = tam giác MOG ( c - g - c )

\(\implies\) IGK = OGM ( 2 góc tương ứng )

Mà 2 góc này ở vị trí 2 góc đối đỉnh 

\(\implies\) I , G , O thẳng hàng

\(\implies\) H , G , O thẳng hàng 

+) I là trung điểm của HG 

\(\implies\) IH = IG = \(\frac{HG}{2}\)

\(\implies\) 2IH = 2IG = HG ( 5 )

+) IG = GO ( tam giác KIG = tam giác MOG )

​​\(\implies\)​ 2IG = 2GO ( 6 )

Từ ( 5 ) ; ( 6 ) 

\(\implies\) HG = 2GO

16 tháng 3 2020

Trong một tam giác :

+)3 đường trung tuyến đồng quy : trọng tâm

+)3 đường phân giác đồng quy : tâm đường tròn nội tiếp tam giác

+)3 đường cao đồng quy : trực tâm

+)3 đường trung trực đồng quy : tâm đường tròn ngoại tiếp tam giác 

20 tháng 3 2020

A D M B C O

Kẻ \(MO\perp AD\text{ }\left(O\in AD\right)\)

Ta có: OM là đường vuông góc; MA, MB, MC, MD là các đường xiên (lớn nhất là \(MA\) hay \(MD\))

Ta luôn có: \(OM\le MB\le MA\) hoặc \(OM\le MB\le MD\)

 \(OM\le MC\le MA\) hoặc \(OM\le MC\le MD\)

Có 3 khả năng: \(MB+MC\le MA+MD\) (Dấu bằng xảy ra khi \(B\equiv A,\text{ }C\equiv D\text{​​}\text{​​}\text{​​}\) hoặc \(B\equiv D,\text{ }C\equiv A\))

\(MB+MC\le2MA\) (Dấu bằng xảy ra khi \(A\equiv B\equiv C\))

\(MB+MC\le2MD\)(Dấu bằng xảy ra khi \(D\equiv B\equiv C\))

Tuỳ thuộc vào vị trí của M mà chứng minh. Bất đẳng thức trên có thể không đúng với mọi vị trí của M.

22 tháng 3 2020

a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)

\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)

\(P=-\frac{2}{5}x^5y^7\)

Hệ số là  \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)

Bậc của đơn thức là 12

b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :

     \(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)

\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)

\(\Leftrightarrow-5+5=0\)

\(\Leftrightarrow0=0\)(TM)

Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)

Thay \(x=-1\)vào đơn thức M(x), ta được :

      \(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)

\(\Leftrightarrow2+7+5=0\)

\(\Leftrightarrow14=0\)(KTM)

Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)