cho tam giác ABC(AB<AC) có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD.Chứng minh:
a) tam giác AMB=CMD.
b) AB=CD và AB // CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là n
Ta có: \(\frac{21}{32+n}=\frac{7}{15}\Leftrightarrow\frac{15.21}{7}=32+n\Leftrightarrow45=32+n\Leftrightarrow n=13\) 13
Gọi số cây mỗi lớp đã trồng lần lượt là x,y,z,t\(\left(x,y,z,t\inℕ^∗\right)\)
Theo điều kiện của đề bài ta có : y - x = 5
Mà \(x:y:z:t=0,8:0,9:1:1,1\)hay \(\frac{x}{0,8}=\frac{y}{0,9}=\frac{z}{1}=\frac{t}{1,1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{0,8}=\frac{y}{0,9}=\frac{z}{1}=\frac{t}{1,1}=\frac{y-x}{0,9-0,8}=\frac{5}{0,1}=50\)
Do đó : \(\frac{x}{0,8}=50\Rightarrow x=50\cdot0,8=40\)
\(\frac{y}{0,9}=50\Rightarrow y=50\cdot0,9=45\)
\(z=50\)
\(\frac{t}{1,1}=50\Rightarrow t=50\cdot1,1=55\)
Vậy : ....
Bài giải
\(\left(x+2\right)\left(x+6\right)< 0\)
\(\Rightarrow\text{ }x+2\text{ và }x+6\) trái dấu Mà \(x+2< x+6\text{ với }\forall\text{ }x\)
\(\Rightarrow\hept{\begin{cases}x+2< 0\\x+6>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -2\\x>-6\end{cases}}\Rightarrow\text{ }-2>x>-6\)
\(\Rightarrow\text{ }x\in\left\{-5\text{ ; }-4\text{ ; }-3\right\}\)
a, Xét \(\Delta\)AMB và \(\Delta\)CMD
MB = MD (gt)
^AMB = ^CMD (đối đỉnh)
AM = CM (gt)
=> \(\Delta\)AMB = \(\Delta\)CMD (c.g.c)
b, Vì \(\Delta\)AMB = \(\Delta\)CMD
=> ^BAM = ^DCM ( 2 góc tương ứng )
Vậy : AB = CD và AB//CD