a) 7xy3 - x3y
b) 121x2y2 - 1
c) 36x2 - 144y2
d) x2 + 2x + 1 - y2
e) 3(x+y) - a(x+y)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25n^2+\left(-20n\right)+4+\left(-4n^2\right)+20n-25⋮21\)
\(\left(25n^2-4n^2\right)+\left(-20n+20n\right)+\left(4-25\right)⋮21\)
\(=21n^2-21⋮21\)
\(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2+2n-5\right)\left(5n-2-2n+5\right)\)
\(=\left(7n-7\right)\left(3n+3\right)\)
\(=21\left(n-1\right)\left(n+1\right)⋮21\forall n\in Z\)
=> đpcm
ko ghi đề
\(3x^3=12\)
\(x^3=4\)
x từ đây sẽ ra số lẻ
\(\text{x=1.587401}\)
câu b)
\(x\in\left\{\frac{5}{3};-1\right\}\)
mik gợi ý đáp án câu b còn lại bạn tự làm cho chắc kiến thức
TL:
\(x^2y-xy+x-1\)
\(=xy\left(x-1\right)+\left(x-1\right)\)
\(=\left(xy+1\right)\left(x-1\right)\)
câu b ko ghi lại đề bài
\(\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow1.\left[\left(x-1\right)+\left(x+2\right)\right]\)
\(=1.\left(2.x+1\right)\)
\(=2x+1\)
\(a,A=4x^2-20x+27=\left(2x\right)^2-2.2x.5+5^2+2\)\(=\left(2x-5\right)^2+2\)
Mà \(\left(2x-5\right)^2\ge0\Rightarrow\left(2x-5\right)^2+2>0\Rightarrow A>0\)
\(b,B=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)\(=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\)
Mà \(\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow B>0\)
\(c,C=x^2+4x+y^2-6y+15=x^2+4x+4+y^2-6y+9+2\)
\(\left(x+2\right)^2+\left(y-3\right)^2+2\)
Mà \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+2>0\Rightarrow C>0\)
TL:
\(a,1-2m+m^2-x^2-4x-4\)
\(=\left(m-1\right)^2-\left(x-2\right)^2\)
\(=\left(m+x-3\right)\left(m-x+1\right)\)
x^5+4x^3+3x^2-5x+15 x^3-x+3 x^2 x^5-x^3+3x^2 - 5x^3-5x+15 +5 5x^3-5x+15 - 0
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(1-ab\right)=a+b-ab=1\)
\(\Rightarrow ab-a-b+1=0\Leftrightarrow a\left(b-1\right)-\left(b-1\right)=0\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
\(+,a=1\Rightarrow b=0\Rightarrow P=1\)
\(+,b=1\Rightarrow a=0\Rightarrow P=1\)
a) \(7xy^3-x^3y\)
\(=xy\left(7y^2-x^2\right)\)
\(=xy\left(y\sqrt{7}-x\right)\left(y\sqrt{7}+x\right)\)
b) \(121x^2y^2-1\)
\(=\left(11xy\right)^2-1^2\)
\(=\left(11xy-1\right)\left(11xy+1\right)\)