giải hệ phương trình :
\(\hept{\begin{cases}\left(x^3+y^3\right)\left(1+\frac{1}{xy}\right)^3=\frac{125}{4}\\\left(x^2+y^2\right)\left(1+\frac{1}{xy}\right)^2=\frac{25}{2}\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính được
\(M=\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\)
Với mọi a>0; \(a\ne1,\)ta có: \(\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}>0\Leftrightarrow M>0\left(1\right)\)
Lại có:
\(a-\sqrt{a}+1>0\forall a>0\)
\(\Leftrightarrow2a+4\sqrt{a}+2>6\sqrt{a}\)\(\Rightarrow2>\frac{6\sqrt{a}}{\left(\sqrt{a}+1\right)^2}\Leftrightarrow M< 2\)(2)
Từ (1) và (2) => M đạt giá trị nguyên khi M=1
Bạn tự tìm a nha...
\(x^2+\sqrt{2006+x}=2006\)(1)
ĐKXĐ \(x\ge-2006\)
Đặt \(\sqrt{2006+x}=a\left(a\ge0\right)\)\(\Rightarrow2006=a^2-x\)
Khi đó,pt (1) trở thành
\(x^2+a=a^2-x\Rightarrow x^2-a^2+x+a=0\)
\(\left(x+a\right)\left(x-a+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+a=0\\x-a+1=0\end{cases}}\)
Theo cách đặt ta có
\(\orbr{\begin{cases}x=-\sqrt{x+2006}\\x+1=\sqrt{x+2006}\end{cases}}\)
+, \(x=-\sqrt{x+2006}\left(x\le0\right)\)
\(\Rightarrow x^2=x+2006\)
+,\(x+1=\sqrt{x+2006}\left(x\ge-1\right)\)
\(\Rightarrow x^2+2x+1=x+2006\)