Cho tam giác ABC , trên BC lấy điểm M. Vẽ ME, MF vuông góc với AC, AB, kẻ đường cao AD CMR:
a) BFM đồng dạng CEM
b) BHC đồng dạng CEM
c) ME + MF ko thay đổi khi M di động trên BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=-x^4+x^2-4y^2+2x-4y+2000.\)
\(=-x^4+2x^2-1-x^2+2x-1-4y^2-4y-1+2003\)
\(=-\left(x^2-1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)
\(=-\left(x-1\right)^2\left(x+1\right)^2-\left(x-1\right)^2-\left(2y+1\right)^2+2003\)
\(\Rightarrow F_{min}=2003\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy \(F_{min}=2003\Leftrightarrow x=1;y=-\frac{1}{2}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)\(\Leftrightarrow\)\(\frac{x^2}{y-1}\ge4x-4y+4\)
Tương tự với hai phân thức còn lại, cộng 3 bđt lại ta đc: \(\frac{x^2}{y-1}+\frac{y^2}{z-1}+\frac{z^2}{x-1}\ge4+4+4=12\)
Dấu "=" xảy ra khi \(a=b=c=4\)
bài này đề a,b,c>1 chứ, thay a=b=c=1/4 thì sẽ rõ :)) mấy ông ko biết cứ k sai
Hình thang ABCD nên \(\hept{\begin{cases}AC//BD\\AB//CD\end{cases}}\)Vì AB//CD rồi nên không thể nói AB vuông với CD được bạn ơi?
Giả sử trong ba số a,b,c không có số nào chia hết cho 3
Khi đó \(a=3k\pm1\left(k\in Z\right)\)
\(b=3l\pm1\left(l\in Z\right)\)
\(c=3m\pm1\left(m\in Z\right)\)
\(\Rightarrow a^3\)chia 9 dư 1 hoặc -1
\(b^3\)chia 9 dư 1 hoặc -1
\(c^3\)chia 9 dư 1 hoặc -1
TH1: Nếu a chia hết cho 9 dư 1; b chia 9 dư 1; c chia 9 dư 1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư 3( vô lý )
TH2: Nếu \(a^3\)chia 9 dư 1 ; \(b^3\)chia 9 dư 1 ; \(c^3\)chia 9 dư 1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư 1( vô lý )
TH3: Nếu \(a^3\)chia 9 dư 1; \(b^3\)chia 9 dư -1 ;\(c^3\)chia 9 dư -1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư -1( vô lý )
TH4: Nếu \(a^3\)chia 9 dư -1; \(b^3\)chia 9 dư -1 ;\(c^3\)chia 9 dư -1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư -3 ( vô lý )
Vì a,b,c vai trò như nhau nên điều giả sử sai
Vậy luôn tồn tại 1 trong 3 số chia hết cho 3
a) \(xy+y-2x-2\)
\(=y\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(y-2\right)\)
b) \(xy+1+x+y\)
\(=y\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(y+1\right)\)
c) \(x^2+xy-x-y+xz-z\)
\(=\left(x^2-x\right)+\left(xy-y\right)+\left(xz-z\right)\)
\(=x\left(x-1\right)+y\left(x-1\right)+z\left(x-1\right)\)
\(=\left(x-1\right)\left(x+y+z\right)\)
x O y A B C M t H
a) Phần thuận:
Vì \(AOBC\)là hình chữ nhật ; M là giao điểm của 2 đường chéo AB và OC
\(\Rightarrow MA=MO\)
Mà \(O;A\)cố định
\(\Rightarrow M\)thuộc đường trung trực của OA.
Vẽ đường trung trực của OA và cắt Ox tại H.
*) Giới hạn: Khi B tiến dần tới O thì M tiến dần tới H.
Nhưng \(B\ne O\)( để tạo thành hình chữ nhật \(AOBC\))
\(\Rightarrow M\ne H\)
Vậy quỹ tích điểm M thuộc tia Ht ( trừ điểm H )
b) Phần đảo :
Lấy M thuộc tia Ht\(\left(M\ne H\right)\)
Tia AM cắt Oy tại B.
Vẽ hình chữ nhật AOBC. Ta phải chứng minh M là giao điểm của 2 đường chéo.
Thật vậy,
Xét tam giác OAB có \(HM//OB\)( Vì cùng vuông góc với Ox )
\(HA=HO\)( vì Ht là đương trung trực )
\(\Rightarrow M\)là trung điểm của AB.
Mà AOBC là hình chữ nhật
\(\Rightarrow M\)là trung điểm của OC.
\(\Rightarrow M\)là giao điểm của 2 đường chéo.
c) Kết luận: Qũy tích điểm M là tia Ht, trừ điểm H ( Ht thuộc đường trung trực của OA )
(a-b)(b-c)(a-c)+(a+b)(c+a)(c-b)+(b+c)(c+a)(b-a)
= ( b - c) [ a2−ab−ac+bc−ac−bc−a2−ab]+(b+c)(c+a)(b−a)a2−ab−ac+bc−ac−bc−a2−ab]+(b+c)(c+a)(b−a)
= -2a.(b + c) (b - c) + (b+c)(c+a)(b-a)
= ( b + c ) ( bc + ab - ac - a2a2 - 2ab + 2ac )
= ( b + c ) ( bc - ab + ac - a2a2 )
= ( b + c ) ( a + b ) ( c - a )
x3 + 3x2 + 1 + 28 = 0
x3 + 3x2 + 29 = 0
Mà: 3x2 > 0
29 > 0
nên không có x thỏa mãn.
Viết đi viết lại cái đề vẫn sai mà không biết xem lại nhỉ?
Tham khảo câu tương tự : Câu hỏi của Nguyen Tra - Toán lớp 8 | Học trực tuyến