K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIAM vuông tại M và ΔIAQ vuông tại Q có

AI chung

\(\widehat{MAI}=\widehat{QAI}\)

Do đó: ΔIAM=ΔIAQ

b: ta có: ΔIAM=ΔIAQ

=>IM=IQ

Xét ΔBMI vuông tại M và ΔBNI vuông tại N có

BI chung

\(\widehat{MBI}=\widehat{NBI}\)

Do đó: ΔBMI=ΔBNI

=>IM=IN

mà IM=IQ

nên IM=IN=IQ

a: Xét ΔIAM vuông tại M và ΔIAQ vuông tại Q có

AI chung

\(\widehat{MAI}=\widehat{QAI}\)

Do đó: ΔIAM=ΔIAQ

b: ta có: ΔIAM=ΔIAQ

=>IM=IQ

Xét ΔBMI vuông tại M và ΔBNI vuông tại N có

BI chung

\(\widehat{MBI}=\widehat{NBI}\)

Do đó: ΔBMI=ΔBNI

=>IM=IN

mà IM=IQ

nên IM=IN=IQ

a: Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác AFDC có \(\widehat{AFC}=\widehat{ADC}=90^0\)

nên AFDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)

Độ dài cung nhỏ BC là:

\(l=\dfrac{\Omega\cdot R\cdot n}{180}=\dfrac{\Omega\cdot4\cdot120}{180}=\Omega\cdot\dfrac{8}{3}\)

c: Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{FDH}=\widehat{FBH}\)(BFHD nội tiếp)

\(\widehat{EDH}=\widehat{ECH}\)(CEHD nội tiếp)

mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{BAC}\right)\)

nên \(\widehat{FDH}=\widehat{EDH}\)

=>DA là phân giác của góc FDE

Bài 15:

1: \(A=4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5< =5\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

2: \(B=3-4x-x^2\)

\(=-\left(x^2+4x-3\right)\)

\(=-\left(x^2+4x+4-7\right)\)

\(=-\left(x+2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x+2=0

=>x=-2

3: \(C=8-x^2-5x\)

\(=-\left(x^2+5x-8\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{57}{4}\right)\)

\(=-\left(x+\dfrac{5}{2}\right)^2+\dfrac{57}{4}< =\dfrac{57}{4}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{5}{2}=0\)

=>\(x=-\dfrac{5}{2}\)

4: \(D=-x^2+6x-4\)

\(=-\left(x^2-6x+4\right)\)

\(=-\left(x^2-6x+9-5\right)\)

\(=-\left(x-3\right)^2+5< =5\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

5: \(E=-10-x^2-6x\)

\(=-\left(x^2+6x+10\right)=-\left(x^2+6x+9+1\right)\)

\(=-\left(x+3\right)^2-1< =-1\forall x\)

Dấu '=' xảy ra khi x+3=0

=>x=-3

6: \(F=-x^2+13x+1\)
\(=-\left(x^2-13x-1\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{13}{2}+\dfrac{169}{4}-\dfrac{173}{4}\right)\)

\(=-\left(x-\dfrac{13}{2}\right)^2+\dfrac{173}{4}\le\dfrac{173}{4}\forall x\)

Dấu '=' xảy ra khi x-13/2=0

=>x=13/2

7: \(G=-4x^2+8x-7\)

\(=-\left(4x^2-8x+7\right)\)

\(=-\left(4x^2-8x+4+3\right)\)

\(=-\left(2x-2\right)^2-3< =-3\forall x\)

Dấu '=' xảy ra khi 2x-2=0

=>2x=2

=>x=1

8: \(H=-4x^2-12x\)

\(=-\left(4x^2+12x\right)\)

\(=-\left(4x^2+12x+9-9\right)\)

\(=-\left(2x+3\right)^2+9< =9\forall x\)

Dấu '=' xảy ra khi 2x+3=0

=>x=-3/2

9: \(I=3x-9x^2-1\)

\(=-9\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)

\(=-9\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{1}{12}\right)\)

\(=-9\left(x-\dfrac{1}{6}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi x-1/6=0

=>x=1/6

10: \(K=7-9x^2-8x\)

\(=-9\left(x^2+\dfrac{8}{9}x-\dfrac{7}{9}\right)\)

\(=-9\left(x^2+2\cdot x\cdot\dfrac{4}{9}+\dfrac{16}{81}-\dfrac{79}{81}\right)=-9\left(x+\dfrac{4}{9}\right)^2+\dfrac{79}{9}< =\dfrac{79}{9}\forall x\)

Dấu '=' xảy ra khi x+4/9=0

=>x=-4/9

5 tháng 7

Để số nam và số nữ chia đều vào mỗi tổ thì số tổ thuộc ƯC(24,18)

Ta có: \(24=2^3\cdot3\)\(18=3^2\cdot2\)

=> \(ƯLCN\left(24;18\right)=2\cdot3=6\)

=> \(ƯC\left(24;18\right)=Ư\left(6\right)=\left\{1;2;3;6\right\}\)

=> Có 4 cách chia tổ 

AH
Akai Haruma
Giáo viên
4 tháng 7

Lời giải:
Ta có: $BC+CD=BD\Rightarrow BC=BD-CD=8-4=4$ (cm) 

Vậy $AB=BC=4$ (cm). Mà $B$ nằm giữa $A,C$ nên $B$ là trung điểm $AC$.

4 tháng 7

Số lớn gấp số bé số lần là:

\(6-1=5\) (lần)

Số lớn là:

\(456:\left(5-1\right)\times5=570\)

Số bé là:

\(570-456=114\)

Đáp số:...

9 tháng 7

thank tú nhé

AH
Akai Haruma
Giáo viên
4 tháng 7

Lời giải:
Gọi $x$ là số tổ khi chia 24 học sinh nam, 18 học sinh nữ đều vào các tổ
$(x\in\mathbb{N}, x\geq 2)$

Để số hs nam và nữ đều nhau khi chia vào các tổ thì $x$ là $ƯC(24,18)$

$\Rightarrow ƯCLN(24,18)\vdots x$

$\Rightarrow 6\vdots x$

$\Rightarrow x\in \left\{2; 3;6\right\}$ (do $x\geq 2$)

Vậy có 3 cách chia.

3 tháng 11

1+1=3