Cho tam giác ABC có góc A= 90 độ . Tia phân giác của góc B cắt AC tại D ( D thuộc AC ). Trên cạnh BC lấy điểm E sao cho BE = BA.
a. Chứng minh AD = DE
b. Tính số đo của góc BED?
c. Chứng minh BD vuông góc với AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bộ phận nào không có trong mạch điện.
a. Dây dẫn. c. Vật tiêu thụ điện
b. Dây nhựa. d. Khóa.
#HOK TOT
Có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\Rightarrow a=2c-b\\b+c=2a\left(1\right)\\c+a=2b\left(2\right)\end{cases}}\)
Thay a=2c-b vào (1) và (2) ta được
\(\hept{\begin{cases}b+c=2\left(2c-b\right)\\c+\left(2c-b\right)=2b\end{cases}\Rightarrow b=c\Rightarrow a=c}\)
Vậy a=b=c
Khi đó: \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Nguồn: GV
A = xy5 + 2xy5 - 8 + 3x4y - 3xy5 + 12 - 3x4y
A = ( 1 + 2 - 3 )xy5 + ( 3 - 3 )x4y + ( 12 - 8 )
A = 0xy5 + 0x4y + 4
A = 0 + 0 + 4
A = 4
=> Biểu thức A luôn nhận giá trị không đổi với mọi x và y ( đpcm )
a) Xét \(\Delta ABD\)và \(\Delta AED\)có :
AB = AE ( gt )
^B1 = ^B2 ( BD là phân giác của ^B )
AD chung
=> \(\Delta ABD=\Delta AED\left(c.g.c\right)\)
=> \(AD=DE\)( hai cạnh tương ứng )
b) \(\Delta ABD=\Delta AED\)
=> ^BED = ^BAD = 900
c) Nối A với E . Gọi giao điểm của AE và BD là H
Xét \(\Delta ABH\)và \(\Delta EBH\)có :
AB = AE ( gt )
^B1 = ^B2 ( BD là phân giác của ^B )
AH chung
=> \(\Delta ABH=\Delta EBH\left(c.g.c\right)\)
=> ^H1 = ^H2 ( hai cạnh tương ứng ) ( 1 )
^H1 + ^H2 = 1800 ( kề bù ) ( 2 )
Từ ( 1 ) và ( 2 ) => ^H1 = ^H2 = 1800/2 = 900
=> BD vuông góc với AE ( đpcm )