K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

Để phương trình có nghiệm thì : 

\(\Delta_x=a^2-\left(2a^2+b^2-5\right)\ge0\)

\(\Leftrightarrow a^2+b^2\le5\)

\(\Leftrightarrow\left(a+b\right)^2\le5+2ab\)

\(\Leftrightarrow ab\ge\frac{\left(a+b\right)^2-5}{2}\)

Ta có :

\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1\)

\(\ge\frac{\left(a+b\right)^2-5}{2}+\left(a+b\right)+1=\frac{1}{2}\left(a+b+1\right)^2-2\ge-2\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}a=-2\\b=1\end{cases}}\)

6 tháng 10 2019

a)a+b=1

A=(a+b)(a2-ab+b2)+3ab[(a+b)2-2ab]+6a2b2 = a2-ab+b2+3ab(1-2ab)+6a2b2=a2+2ab+b2=(a+b)2=1

b) làm như trên hoặc có cách để tính nhanh

x-y =1

chon x=1;y=0 thay vào ta được B=1 

5 tháng 10 2019

Đặt :
\(\frac{1}{315}=a;\frac{1}{651}=b\)  thay vào A ta được :

\(A=\left(2+a\right)b-\left(3+1-b\right).3a-4ab+12a\)

\(\Leftrightarrow A=2b+ab-12a+3ab-4ab+12a\)

\(\Leftrightarrow A=2b\)

Thay \(b=\frac{1}{651}\) ta được :

\(A=\frac{2}{651}\)

Chúc bạn học tốt !!!

5 tháng 10 2019

Ta có n3 - n=n( n2-1)=(n-1)n(n+1)

Mà tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6

5 tháng 10 2019

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

-Chanh-

5 tháng 10 2019

a, A= a3 + b+ 3ab(a2 + b2) + 6a2b2(a + b) = a3 + b+ 3ab(a2 + b2) + 6a2b2

      = ( a + b)(a- ab + b2)+ 3ab(a+b2+ 2ab)

      = a- ab + b+ 3ab ( a+b)2

        = a- ab + b+ 3ab

      = a2 +2ab + b2= (a+b)2 = 1

b, B = x3 - y3 - 3xy

= (x-y)(x2+xy+y2) -3xy

= x2+xy+y-3xy

= x2-2xy+y2

= (x-y)2 = 1

chúc bn hc tốt ^^

5 tháng 10 2019

Ta có: 

ab + bc + ac = 0

=> \(\frac{ab+bc+ac}{abc}=0\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Em làm tiếp theo link: Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath

5 tháng 10 2019

Ta có :

\(ab+bc+ca=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Quay lại bài toán ta có :

\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=\frac{3abc}{abc}=3\)

Chúc bạn học tốt !!!

5 tháng 10 2019

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow14+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=-14\)

\(\Leftrightarrow ab+bc+ac=-7\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\)(vì a+b+c=0)

Ta có: \(\left(a^2+b^2+c^2\right)^2=196\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=196\)

\(\Leftrightarrow a^4+b^4+c^4+98=196\)

\(\Leftrightarrow a^4+b^4+c^4=98\)

5 tháng 10 2019

mình làm đc rồi

5 tháng 10 2019

Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

5 tháng 10 2019

Em tham khảo link: Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath