Cho ABC, kẻ AH BC tại H, vẽ điểm D đối xứng với H qua AB, vẽ điểm E đối xứng với H qua AC. Chứng minh ADE cân.
* Có vẽ hình nhé ❤️
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sau khi bỏ dấu ngoặc(thực hiện phép nhân)ta sẽ được đa thức :
\(P\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) với \(n=2\left(2008+2009\right)=8034\)
Thay x = 1 thì giá trị đa thức là P(1) đúng bằng tổng các hệ số \(a_n+a_{n-1}+...+a_1+a_0\)
Ta có : \(P\left(1\right)=\left(8\cdot1^2+3\cdot1-10\right)^{2008}\cdot\left(8\cdot1^2+1-10\right)^{2009}=-1\)
Vậy tổng của hệ số của đa thức là -1
Đặt \(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.........+\frac{1}{1+2+....+n}\)
Ta có: \(1+2=\frac{2.3}{2}\); \(1+2+3=\frac{3.4}{2}\); \(1+2+3+4=\frac{4.5}{2}\); .......... ; \(1+2+.......+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow A=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+.......+\frac{1}{\frac{n\left(n+1\right)}{2}}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.......+\frac{2}{n\left(n+1\right)}\)
\(=1+2.\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{n\left(n+1\right)}\right]\)
\(=1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+........+\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=1+2.\left(\frac{1}{2}-\frac{1}{n+1}\right)=1+1-\frac{2}{n+1}=2-\frac{2}{n+1}\)
Để A có GTNN thì \(\frac{2}{n+1}\)phải có GTLN \(\Rightarrow n+1\)phải có GTNN
mà \(n>1\)\(\Rightarrow n+1>2\)\(\Rightarrow min\left(n+1\right)=3\)\(\Leftrightarrow n=2\)
\(\Rightarrow A=2-\frac{2}{1+2}=2-\frac{2}{3}=\frac{4}{3}\)
Vậy \(minA=\frac{4}{3}\Leftrightarrow n=2\)
chép sai đề bài thì làm sao giải được
sai chỗ này nè
kẻ AH...BC tại H