1) Cho tam giác ABC vuông tại A( AB < AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BD. CMR tia HM là tia phân giác của góc AHC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta co:
\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)
\(=\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\left(ab+bc+ca\right)\le\text{ }\frac{\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]^3}{27}\)
\(\frac{\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]^3}{27}=\frac{\left(a+b+c\right)^6}{27}=\frac{3^6}{27}=27\)
Dau '=' xay ra khi \(a=b=c=1\)

Sửa đề: chứng minh:\(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}+\frac{b^2}{\sqrt{12c^2+11ca+2a^2}}+\frac{c^2}{\sqrt{12a^2+11ca+2b^2}}\ge\frac{3}{5}\)
Ta có: \(12b^2+11bc+2c^2=\frac{1}{4}\left(7b+3c\right)^2-\frac{1}{4}\left(b-c\right)^2\le\frac{1}{4}\left(7b+3c\right)^2\)
Do đó: \(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}\ge\frac{2a^2}{7b+3c}\).Tương tự hai BĐT còn lại rồi cộng theo vế thu được:
\(VT\ge\frac{2a^2}{7b+3c}+\frac{2b^2}{7c+3a}+\frac{2c^2}{7a+3b}\)
\(=2\left(\frac{a^2}{7b+3c}+\frac{b^2}{7c+3a}+\frac{c^2}{7a+3b}\right)\ge\frac{2\left(a+b+c\right)^2}{10\left(a+b+c\right)}=\frac{3}{5}\)(áp dụng BĐT Cauchy-Schwarz dạng Engel)
Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1
P/s: Is that true? Thấy đề nó là lạ nên sửa thôi chứ ko chắc rằng mình sửa đúng..
@Cool Kid: Cách của mình"
Đầu tiên ta xét hiệu: \(12b^2+11bc+2c^2-x\left(b-c\right)^2\). Ta chọn x để biểu thức sau khi phân tích có dạng một số chính phương.
\(=\left(12-x\right)b^2+\left(11+2x\right)bc+\left(2-x\right)c^2\)
\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+\left(2-x\right)c^2-\frac{\left(11+2x\right)^2c^2}{4\left(12-x\right)}\)
\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+c^2\left[\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}\right]\)
Đến đây thì ý tưởng đã rõ, ta chọn x sao cho 12 - x > 0 và:
\(\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}=0\). Bấm máy tính ta suy ra \(x=-\frac{1}{4}\)
Từ đó có thể dễ dàng suy ra cách phân tích bên trên

A B D C E F O
a)tứ giác ABCD có:BF//ED(vì BC//AD) vàBF=ED(=1/2BC=1/2AD) =>DEBF là hbh.
b)gọi O là giao của 2 đường chéo BD, AC của hbh ABCD.
do đó O là trung điểm BD và AC.(1)
Lại có DEBF là hbh(cmt) => EF giao BD tại trung điểm O của BD.(2)
Từ (1) và(2) suy ra BD,AC và EF đòng quy tại trung điểm O của m,ỗi đường.
a ) Do ABCD là hình bình hành nên AB=CD và AD=BC
Xét \(\Delta ABE\) và \(\Delta CDF\) có :
\(AB=CD\)
\(AE=\frac{1}{2}AD=\frac{1}{2}BC=CF\)
\(\widehat{BAE}=\widehat{DCF}\)
Do đó hai tam giác trên bằng nhau
b,
Từ phần a suy ra \(BE=DF\)
Tứ giác DEBF có 2 cặp cạnh đối BE=DF và DE=BF nên DEBF là hình bình hành
c,
Do ABCD là hình bình hành nên AC và BD là hai đường chéo cắt nhau tại trung điểm mỗi đường
DEBF cũng là hình bình hành nên BD và FE là hai đường chéo cắt nhau tại trung điểm mỗi đường
Do đó AC,DB,FE đồng quy tại O là trung điểm mỗi đường


1) x^2 - 5x + 6 = 0
<=> (x - 3)(x - 2) = 0
<=> x - 3 = 0 hoặc x - 2 = 0
x = 3 x = 2
=> x = 2 hoặc x = 3
\(3x\left(x-4\right)+12x-48=0\)
\(\Leftrightarrow3x\left(x-4\right)+12\left(x-4\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+12=0\\x-4=0\end{cases}}\Leftrightarrow x=\pm4\)
Câu c) đề sai thì pk

a,Xét tg ABC có: Góc A=90*,Góc M=90*,Góc N=90* <=>Tứ giác AMDN là hcn(vì có gócA=góc M=góc N=90*)
Học tứ giác nội tiếp chưa?
Nếu rồi thì giải như sau:
ABD vuông cân suy ra AM là đường cao.
từ đó suy ra ABHM nội tiếp.
Suy ra được 2 thông tin:
(1) Góc AHM = Góc ABM.
(2) Góc MHC = Góc BAM.
Mà tam giác BAM cân tại M(tính chất trung tuyến của cạnh huyền) suy ra Góc ABM = Góc BAM. (3)
(1) (2) (3) suy ra ĐPCM