\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{4-\sqrt{15}}=\dfrac{\sqrt{2}.\sqrt{4-\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}=\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
\(\sqrt{21-12\sqrt{3}}\)
\(=\sqrt{12-2.2\sqrt{3}.3+9}\)
\(=\sqrt{\left(\sqrt{12}-3\right)^2}\)
\(=2\sqrt{3}-3\)
\(\sqrt{21-12\sqrt{3}}=\sqrt{\left(2\sqrt{3}-3\right)^2}=\left|2\sqrt{3}-3\right|=2\sqrt{3}-3\)
Đề bài ko rõ nên làm 2 trường hợp :
+) \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\) ( Điều kiện : x > 0 )
Trừ A đi 1 ta có :
\(\dfrac{\sqrt{x}-1}{\sqrt{x}}-1=\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}=\dfrac{-1}{\sqrt{x}}< 0\left(\sqrt{x}>0\right)\)
\(\Leftrightarrow A-1< 0\Leftrightarrow A< 1\)
+) \(A=\dfrac{\sqrt{x-1}}{\sqrt{x}}\) ( Điều kiện : x > 1 )
Trừ A đi 1 , ta được :
\(\dfrac{\sqrt{x-1}}{\sqrt{x}}-1=\dfrac{\sqrt{x-1}-\sqrt{x}}{\sqrt{x}}\)
Nhận xét : Dễ thấy rằng , với x > 1 thì \(\sqrt{x-1}< \sqrt{x}\)
\(\Rightarrow\sqrt{x-1}-\sqrt{x}< 0\)
Mặt khác \(\sqrt{x}>0\left(x>1\right)\)
\(\Rightarrow A< 1\)
\(\dfrac{4}{a-1}>2\)
\(\dfrac{4}{a-1}-2>0\)
\(\dfrac{4-2\left(a-1\right)}{a-1}>0\)
\(\dfrac{6-2a}{a-1}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-2a>0\\a-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-2a< 0\\a-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1< a< 3\\a>3;a< 1\left(L\right)\end{matrix}\right.\)
ĐKXĐ: \(a\ne1\)
Ta có: \(\dfrac{4}{a-1}>2\Leftrightarrow\dfrac{4}{a-1}-2>0\)
\(\Leftrightarrow\dfrac{2\left(a-3\right)}{1-a}>0\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a-3>0\\1-a>0\end{matrix}\right.\\\left[{}\begin{matrix}a-3< 0\\1-a< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>3\\a< 1\end{matrix}\right.\\\left\{{}\begin{matrix}a< 3\\a>1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow1< a< 3\)
Vậy...
\(\sqrt{7+4\sqrt{3}}=\sqrt{4+4\sqrt{3}+3}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
a/
\(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2\sqrt{3}+\left(\sqrt{3}\right)^2}=\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
b/
\(\sqrt{21-12\sqrt{3}}=\sqrt{3^2-2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}=\)
\(=\sqrt{\left(3-2\sqrt{3}\right)^2}=3-2\sqrt{3}\)
d/ \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\)
\(=\sqrt{3^2+2.3.\sqrt{6}+\left(\sqrt{6}\right)^2}=\sqrt{\left(3+\sqrt{6}\right)^2}=3+\sqrt{6}\)
\(\sqrt{7-2\sqrt{10}}=\sqrt{5-2\sqrt{10}+2}\\ =\sqrt{\sqrt{5}^2-2.\sqrt{5}.\sqrt{2}+\sqrt{2}^2}\\ =\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\left|\sqrt{5}-\sqrt{2}\right|\\ =\sqrt{5}-\sqrt{2}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
15-6=11
6+33=39
12-6=2
dễ