Cho a là 1 hợp số. Khi phân tích a ra thừa số nguyên tố thì có chứa hai thừa số khác nhau là \(p_1\text{ và }p_2\)Biết a3 có tất cả là 40 ước. Hỏi a2 có tất cả là bao nhiêu ước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a2 + b2 = 80
=> (a2 + 2ab + b2) - 2ab = 80
=> (a + b)2 - 2ab = 80
=> (-6)2 - 2ab = 80
=> 2ab = 36 - 80
=> 2ab = -44
=> ab = -22
Khi đó: M = a3 + b3 = (a + b)(a2 - ab + b2) = -6.[80 - (-22)] = -6.102 = -612
a) =\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+\frac{25}{4}x^2-\frac{9}{4}x^2\)
\(=\left(x^2-x+1-\frac{5}{2}x\right)^2-\frac{9}{4}x^2\)
\(=\left(x^2+1-2x\right)\left(x^2+1-5\right)\)
Em kiểm tra lại đề bài. Nếu a = b = c = d. Thì a/b+c + b/c+d + c/d+a + d/a+b = 2.
Câu hỏi của nhóc con - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo đề bài và cách làm tại link này nhé!
Ta có x2 –xy + y2 = 3 ⇔ (x- )2 = 3 –
Ta thấy (x- )2 = 3 – ≥ 0
⇒ -2 ≤ y ≤ 2
⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x
Ta được các nghiệm nguyên của phương trình là :
(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM