Tìm giá trị lớn nhất, giá trị nhỏ nhất (nếu có thể):
d, \(D = -x^2 + 30x - 10\)
e, \(E = -2x^2 + 9x + 30\)
f, \(F = -5x^2 - 20x - 4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(7x+2\right)^{-1}=3^{-2}\)
<=> \(\frac{1}{7x+2}=\frac{1}{9}\)
<=> \(7x+2=9\)
<=>\(x=1\)
vậy.......
Câu c là dấu " . " là dấu nhân
a) \(x:y:z=3:5:\left(-2\right)\) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)=> \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng TC dãy tỉ số bằng nhau ta có ;
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\hept{\begin{cases}\frac{x}{3}=31\\\frac{y}{5}=31\\\frac{z}{-2}=31\end{cases}}\Rightarrow\hept{\begin{cases}x=93\\y=155\\z=-62\end{cases}}\)
b) Ta có : \(\hept{\begin{cases}2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\\5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\end{cases}}\)
=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)
=> \(\hept{\begin{cases}\frac{x}{21}=-2\\\frac{y}{14}=-2\\\frac{z}{10}=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-42\\y=-28\\z=-20\end{cases}}\)
c) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
=> \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
=> xyz = 2k.3k.5k
=> 30k3 = 810
=> k3 = 27
=> k = 3
Vậy x = 6,y = 9,z = 15
\(\left|x-4\right|+\left|7-4\right|=1\)
\(\Leftrightarrow\left|x-4\right|+3=1\)
\(\Leftrightarrow\left|x-4\right|=-2\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=2\\x-4=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=2\end{cases}}}\)
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x}{6y}-\frac{6}{6y}=\frac{3y}{6y}\)
\(\Leftrightarrow x-6=3y\)
\(\Leftrightarrow x=3\cdot\left(y+2\right)\)
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{x}{6}-\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{x-3}{6}\)
\(\Leftrightarrow\left(x-3\right)y=6\Leftrightarrow x-3;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x - 3 | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 9 | -3 | 6 | 0 | 5 | 3 | 4 | -2 |
A B C D
Xét tam giác ABC có ^B = ^C => Tam giác ABC cân tại A
=> AB = AC
Xét tam giác ADB và tam giác ADC có :
^DAB = ^DAC ( AD là phân giác của ^A )
AB = AC ( tam giác ABC cân )
^B = ^C ( gt )
=> Tam giác ADB = tam giác ADC ( g.c.g )
Xong :)
làm xíu hình cũng được vậy
A B C D
Ta có góc B = góc C suy ra tam giác ABC cân tại A
Do tam giác ABC là tam giác cân và AD là đường phân giác
=> AD đồng thời là đường cao
Xét hai tam giác vuông ADB và ADC ta có
góc B = góc C ( giả thiết )
AD cạnh chung
=> tam giác ADB = tam giác ADC ( cạnh huyền - góc nhọn )
=> góc ADB = góc ADC ( các góc tương ứng của hai tam giác bằng nhau )
Ta đã chứng minh được tam giác ADB = tam giác ADC
=> AB = AC ( các cạnh tương ứng của hai tam giác bằng nhau )
Toàn bộ đều tìm Max :)
D = -x2 + 30x - 10
D = -( x2 - 30x + 225 ) + 215
D = -( x - 15 )2 + 215
-( x - 15 )2 ≤ 0 ∀ x => -( x - 15 )2 + 215 ≤ 215
Đẳng thức xảy ra <=> x - 15 = 0 => x = 15
=> MaxD = 215 <=> x = 15
E = -2x2 + 9x + 30
E = -2( x2 - 9/2x + 81/16 ) + 321/8
E = -2( x - 9/4 )2 + 321/8
-2( x - 9/4 )2 ≤ 0 ∀ x => -2( x - 9/4 )2 + 321/8 ≤ 321/8
Đẳng thức xảy ra <=> x - 9/4 = 0 => x = 9/4
=> MaxE = 321/8 <=> x = 9/4
F = -5x2 - 20x - 4
F = -5( x2 + 4x + 4 ) + 16
F = -5( x + 2 )2 + 16
-5( x + 2 )2 ≤ 0 ∀ x => -5( x + 2 )2 + 16 ≤ 16
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxF = 16 <=> x = -2
d) \(D=-x^2+30x-10\)
\(D=-\left(x^2-30x+10\right)\)
\(D=\left(x^2-30x+225-215\right)\)
\(D=-\left(x-15\right)^2+215\le215\)
Max D = 215 \(\Leftrightarrow x=15\)
e) \(E=-2x^2+9x+30\)
\(E=-2\left(x^2-\frac{9}{2}x-15\right)\)
\(E=-2\left(x-\frac{9}{4}\right)^2+\frac{321}{8}\le\frac{321}{8}\)
Max \(E=\frac{321}{8}\Leftrightarrow x=\frac{9}{4}\)
f) \(F=-5x^2-20x-4\)
\(F=-5\left(x^2+4x+\frac{4}{5}\right)\)
\(F=-5\left(x^2+4x+4+\frac{16}{5}\right)\)
\(F=-5\left(x+2\right)^2-16\le-16\)
Max F = -16 \(\Leftrightarrow x=-2\)