tìm \(n\in N\) để
A= \(\left(n^2-3\right)^2\)+16 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một con gà có \(2\)chân, một con thỏ có \(4\)chân.
Gọi số gà là \(x\)(con) \(x\inℕ^∗\).
Khi đó số thỏ là: \(2x\)(con).
Ta có phương trình:
\(2x+4.2x=210\)
\(\Leftrightarrow x=21\)(thỏa mãn)
Vậy có \(2.21=42\)con thỏ.
\(x^3+y^3+2x^2+2xy\)
\(=\left(x+y\right).\left(x^2-xy+y^2\right)+2x.\left(x+y\right)\)
\(=\left(x+y\right).\left(x^2-xy+y^2+2x\right)\)
128.19+128.41+128.40
=128.(19+41+40)
=128.100
=12800
Chúc bạn học tốt
Tuệ_Nghi_<3
\(128\cdot19+128\cdot41+128\cdot40\)
\(=128\cdot\left(19+41+40\right)\)
\(=128\cdot100\)
\(=12800\)
\(Y=1+3+3^2+3^3+.......+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.........+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+......+3^{96}.\left(1+3+3^2\right)\)
\(=\left(1+3+9\right)+3^3.\left(1+3+9\right)+.........+3^{96}.\left(1+3+9\right)\)
\(=13+3^3.13+.......+3^{96}.13\)
\(=13.\left(1+3^3+.......+3^{96}\right)⋮13\)( đpcm )
Y = 1 + 3 + 32 + 33 + ... + 398
= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 396 + 397 + 398 )
= 13 + 33( 1 + 3 + 32 ) + ... + 396( 1 + 3 + 32 )
= 13 + 33.13 + ... + 396.13
= 13( 1 + 33 + ... + 396 ) chia hết cho 13 ( đpcm )
1) CHƯA BT
2) 0,8 ( 8 phần 10 )
Mong giúp đc bn :)
\(A=\left(n^2-3\right)^2+16=n^4-6n^2+25=\left(n^4+10n^2+25\right)-16n^2=\left(n^2+5\right)^2-16n^2=\left(n^2-4n+5\right)\left(n^2+4n+5\right)\)Vì n là số tự nhiên nên \(n^2-4n+5\le n^2+4n+5\)suy ra để A là số nguyên tố thì \(n^2-4n+5=1\Leftrightarrow\left(n-2\right)^2=0\Leftrightarrow n=2\)
Thử n = 2 vào biểu thức A ta thấy thỏa mãn
Vậy n = 2 thì \(A=\left(n^2-3\right)^2+16\) là số nguyên tố