K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

ơ bài nào v ...................

27 tháng 11 2019

Cho 2 số a,b thỏa mãn \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)

28 tháng 11 2019

Biến đổi tương đương giả thiết: \(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\) (xét hiệu 2 vế, cái đẳng thức này quen thuộc nên bạn tự biến đổi)

Do x, y, z dương nên x + y + z > 0. Do đó để đẳng thức trong giả thiết xảy ra thì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\). Thay y, z bởi x vào M ta được M = 3.

Mình nêu hướng làm thôi!

18 tháng 4 2020

Vì a=b nên a-b =0 => (a+b) (a-b) = a(a-b) = 0

2 tháng 6 2020

Lỗi sai \(a=b\)

Sửa lại \(b=a\)thì mới có phân tích được \(a^2-b^2=a^2-ab\)

27 tháng 11 2019

\(\frac{64x^3+1}{16x^2-1}=\frac{A}{4x-1}\left(x\ne\pm\frac{1}{4}\right)\)

\(\Leftrightarrow\frac{\left(4x+1\right)\left(16x^2+4x+1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{A}{4x-1}\)

\(\Leftrightarrow\frac{\left(16x^2+4x+1\right)}{\left(4x-1\right)}=\frac{A}{4x-1}\)

Vậy \(A=\left(16x^2+4x+1\right)\)

27 tháng 11 2019

\(\frac{4x^2+3x-7}{B}=\frac{4x+7}{2x-3}\left(x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{4x^2+7x-4x-7}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{x\left(4x+7\right)-\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{B}=\frac{4x+7}{2x-3}\)

\(\Leftrightarrow\frac{\left(x-1\right)}{B}=\frac{1}{2x-3}\)

\(\Leftrightarrow B=\left(x-1\right)\left(2x-3\right)=2x^2-5x+3\)

27 tháng 11 2019

Đa thức \(x^2+3x-10\)có nghiệm\(\Leftrightarrow x^2+3x-10=0\)

Ta có: \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)

Đa thức có 2 nghiệm:

\(x_1=\frac{-3+7}{2}=2\);\(x_2=\frac{-3-7}{2}=-5\)

Vậy để  \(\frac{x^2-4}{x^2+3x-10}\)được gọi là phân thức thì x khác 2 và -5

\(\Rightarrow\)Để \(\frac{x^2-4}{x^2+3x-10}=0\)thì \(x^2-4=0\left(x\ne2,-5\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow x=\pm2\)

Mà x khác 2 nên x = -2 

Vậy x = -2 thì \(\frac{x^2-4}{x^2+3x-10}=0\)

27 tháng 11 2019

\(\frac{x^2-1}{x^2-2x+1}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)

Để phân thức \(\frac{x^2-1}{x^2-2x+1}\)xác định thì \(\left(x-1\right)^2\ne0\)

\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

Để \(\frac{x^2-1}{x^2-2x+1}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}=0\)thì \(\left(x-1\right)\left(x+1\right)=0\left(x\ne1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\Leftrightarrow x=\pm1\)

Mà x khác 1 nên x = -1 

Vậy x = -1 thì \(\frac{x^2-1}{x^2-2x+1}=0\)

27 tháng 11 2019

A B C K E

a ) Xét \(\Delta AKB\) và \(\Delta AKC\) có :
   AK : cạn chung 

AB = AC  ( gt)

BK = KC ( K là trung điểm của BC )

\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\)

Ta có : 

+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )

Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) ( kề bù )

\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AK\perp BC\)

b ) Vì :

\(\hept{\begin{cases}EC\perp BC\left(gt\right)\\AK\perp BC\left(cmt\right)\end{cases}}\)

\(\Rightarrow EC//AK\) ( tuef vuông góc đến song song )
d ) Vì \(EC\perp BC\left(gt\right)\)

\(\Rightarrow\widehat{BCE}=90^o\)

Vậy \(\widehat{BCE}=90^o\)

15 tháng 3 2020

Làm giúp mình phần c) vs,làm nhanh mình sẽ k cho :3

27 tháng 11 2019

\(M=\frac{1}{16x^2}+\frac{1}{4y^2}+\frac{1}{z^2}\)

\(=\frac{1}{16x^2}+\frac{4}{16y^2}+\frac{16}{16z^2}\)

\(=\frac{1}{16}\left(\frac{1}{x^2}+\frac{4}{y^2}+\frac{16}{z^2}\right)\)

\(\ge\frac{1}{16}.\frac{\left(1+2+4\right)^2}{x^2+y^2+z^2}=\frac{49}{16}\)(Svac - xơ)

Vậy \(M_{min}=\frac{49}{16}\Leftrightarrow\frac{1}{x^2}=\frac{4}{y^2}=\frac{16}{z^2}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{21}}\\y=\frac{2}{\sqrt{21}}\\z=\frac{4}{\sqrt{21}}\end{cases}}\)

27 tháng 11 2019

Cho sửa chỗ dấu "="

\("="\Leftrightarrow\frac{1}{x^2}=\frac{2}{y^2}=\frac{4}{z^2}=7\)

\(\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1}{7}}\\y=\sqrt{\frac{2}{7}}\\z=\frac{2}{\sqrt{7}}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\sqrt{\frac{1}{7}}\\y=-\sqrt{\frac{2}{7}}\\z=-\frac{2}{\sqrt{7}}\end{cases}}\)

27 tháng 11 2019

Đặt \(n^2-14n-256=a^2\)

\(\Leftrightarrow\left(n^2-14n+49\right)-a^2=305\)

\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)

\(\Leftrightarrow\left(n-7+a\right)\left(n-7-a\right)=305=5\cdot61\)

Đến đây làm nốt đi.

27 tháng 11 2019

Đặt \(G=n^2-14n-256=a^2\)(là số chính phương)

\(\Leftrightarrow n^2-14n+49-305=a^2\)

\(\Leftrightarrow\left(n-7\right)^2-305=a^2\)

\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)

\(\Leftrightarrow\left(n+a-7\right)\left(n-a-7\right)=305=5.61\)

Mà \(n+a-7\ge n-a-7\)nên \(\hept{\begin{cases}n+a-7=61\\n-a-7=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n+a=68\\n-a=12\end{cases}}\Leftrightarrow n=\frac{68+12}{2}=40\)

Vậy n = 40 thì \(G=n^2-14n-256\)là số chính phương