\(2.2^2+3.2^3+4.2^4+...+n.2^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{A}\) : \(\widehat{B}\): \(\widehat{C}\) = 3 : 5 : 7
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{3}\) = \(\dfrac{\widehat{B}}{5}\) = \(\dfrac{\widehat{C}}{7}\) = \(\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}\) = \(\dfrac{180^0}{15}\) = `120
\(\widehat{A}\) = 120 \(\times\) 3 = 360
\(\widehat{B}\) = 120 \(\times\) 5 = 600
\(\widehat{C}\) = 120 \(\times\) 7 = 840
Vì 360 < 600 < 840
Vậy \(\widehat{A}\) < \(\widehat{B}\) < \(\widehat{C}\) nên BC < AC < AB (do trong tam giác cạnh đối diện với góc lớn hơn thì lớn hơn và ngược lại)
\(4\left(x+5\right)+x\left(x+5\right)=\left(x+5\right)\left(x+4\right)\)
Nghiệm của đa thức thỏa mãn:
\(\left(x+5\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Tích các nghiệm là: \(\left(-5\right).\left(-4\right)=20\)
a/ Xét tg AMB và tg NMC có
MB=MC (gt)
MA=MN (gt)
\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)
=> tg AMB = tg NMC (c.g.c)
b/
Ta có
tg AMB = tg NMC (cmt) \(\Rightarrow\widehat{ABC}=\widehat{BCN}\) Hai góc trên ở vị trí sole trong
=> AB//CN
\(\Rightarrow\widehat{ADC}=\widehat{DCN}\) (góc so le trong) mà \(\widehat{ADC}=90^o\)
\(\Rightarrow\widehat{DCN}=90^o\)
\(2x\left(x-1\right)+x\left(3-2x\right)=2x-23\)
\(\Leftrightarrow2x^2-2x+3x-2x^2=2x-23\)
\(\Leftrightarrow x=2x-23\)
\(\Leftrightarrow2x-x=23\)
\(\Leftrightarrow x=23\)
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{49}=\dfrac{z^2}{25}=\dfrac{x^2-y^2+z^2}{9-49+25}=\dfrac{-60}{-15}=4\)
\(\Rightarrow\dfrac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\Rightarrow\dfrac{y^2}{49}=4\Rightarrow y^2=196\Rightarrow y=\pm14\)
\(\Rightarrow\dfrac{z^2}{25}=4\Rightarrow z^2=100\Rightarrow z=\pm10\)
Lời giải:
$b^2=ac\Rightarrow \frac{b}{a}=\frac{c}{b}$
Đặt $\frac{b}{a}=\frac{c}{b}=k\Rightarrow b=ak; c=bk$
Khi đó:
$\frac{a^{2022}+b^{2022}}{b^{2022}+c^{2022}}=\frac{a^{2022}+(ak)^{2022}}{b^{2022}+(bk)^{2022}}$
$=\frac{a^{2022}(1+k^{2022})}{b^{2022}(1+k^{2022})}=\frac{a^{2022}}{b^{2022}} (1)$
Và:
$(\frac{a+b}{b+c})^{2022}=(\frac{a+ak}{b+bk})^{2022}$
$=[\frac{a(k+1)}{b(1+k)}]^{2022}=(\frac{a}{b})^{2022}=\frac{a^{2022}}{b^{2022}}(2)$
Từ $(1); (2)$ ta có đpcm.
Đặt \(A=2.2^2+3.2^3+...+n.2^n\)
\(\Rightarrow2A=2.2^3+3.2^4+...+n.2^{n+1}\)
\(\Rightarrow A-2A=2.2^2+\left(3.2^3-2.2^3\right)+...+\left[n.2^n-\left(n-1\right).2^n\right]-n.2^{n-1}\)
\(\Rightarrow-A=2.2^2+2^3+2^4+...+2^n-n.2^{n+1}\)
\(\Rightarrow-A=2+2^1+2^2+2^3+...+2^n-n.2^{n+1}\)
\(\Rightarrow-2A=4+2^2+2^3+...+2^{n+1}-n.2^{n+2}\)
\(\Rightarrow-A-\left(-2A\right)=2+2^1-4-n.2^{n+1}-2^{n+1}+n.2^{n+2}\)
\(\Rightarrow A=n.2^{n+2}-\left(n+1\right)2^{n+1}\)
\(\Rightarrow A=2n.2^{n+1}-\left(n+1\right)2^{n+1}\)
\(\Rightarrow A=\left(n-1\right).2^{n+1}\)