Cho đoạn thẳng AB=8cm. Vẽ (A; 5cm) và (B; 4cm), hai đường tròn này cắt nhau tại M, N. Các đường tròn tâm A theo thứ tự cắt AB tại C, D
a) Tính MA, MB b) Tính CD
Giúp mink nha mn, cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Vì tam giác ABC vuông tại A
=> \(\widehat{A}=90^0\)
Vì \(\widehat{ABy}\) là góc ngoài tại đỉnh B của tam giác vuông ABC
=> \(\widehat{ABy}=\widehat{A}+\widehat{C}=90^0+35^0=125^0\)
Vậy \(\widehat{ABy}=125^0\)
Vẽ tam giác ABC vuông ở A và góc ngoài ABy Giả Sử C = 35 độ Tính ABy
Bài làm:
Xét trong tam giác vuông AHC có: \(\widehat{CAH}+\widehat{C}=90^0\Rightarrow\widehat{CAH}=90^0-\widehat{C}\) \(\left(1\right)\)
Xét trong tam giác vuông CBD có: \(\widehat{CBD}+\widehat{C}=90^0\Rightarrow\widehat{CBD}=90^0-\widehat{C}\) \(\left(2\right)\)
Từ (1) và (2) => \(\widehat{CAH}=\widehat{CBD}\)
Từ \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{-2}{x^2}=\frac{-xz^2-yz^2}{z^2+1}\)(1)
=> \(\frac{x+y}{-17}=\frac{-xz^2-yz^2}{z^2+1}\Rightarrow\frac{x+y}{-17}=\frac{-z^2\left(x+y\right)}{z^2+1}\)
=> (z2 + 1)(x + y) = 17z2(x + y)
=> z2 + 1 = 17z2
=> 16z2 = 1
=> \(z^2=\frac{1}{16}\Rightarrow\orbr{\begin{cases}z=\frac{1}{4}\\z=-\frac{1}{4}\end{cases}}\)
Từ (1) => \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{3x+y-x-y}{47+17}=\frac{2x}{64}=\frac{x}{32}\)
Kết hợp với đề bài => \(\frac{x}{32}=\frac{-2}{x^2}\Rightarrow x^3=-64\Rightarrow x=-4\)
\(\frac{3x+y}{47}=\frac{x+y}{-17}\Rightarrow-17\left(3x+y\right)=47\left(x+y\right)\)
=> - 51x - 17y = 47x + 47y
=> -51x - 47x = 17y + 47y
=> -98x = 64y
=> -49x = 32y
=> -49 x (-4) = 32y
=> 196 = 32y
=> y = 6,125
Vậy các cặp (x;y;z) thỏa mãn là (-4 ; 6,125 ; -1/4) ; (-4 ; 6,125 ; 1/4)
Các số hữu tỉ theo thứ tự giảm dần là:
\(\frac{-3}{2};\frac{-2}{3};0;\frac{2}{5};\frac{4}{7};\frac{2}{3}\)
Sorry mình nhấm! đấy là theo thứ tự từ bé đến lớn.Bạn viết ngược lại là được nhé.