1.Tìm số nguyên n thỏa mãn:
\(n^3 (n^2-7)-36n=2014\)
2.Từ trung điểm một cạnh của tam giác hày kẻ hai đường thẳng chia tam giác đó thành ba đa giác có diện tích bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{2x+3}+\frac{5}{2x-3}-\frac{2x-33}{9-4x^2}\)
= \(\frac{2}{2x+3}+\frac{5}{2x-3}+\frac{2x-33}{4x^2-9}\)
= \(\frac{2\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\frac{5\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x-33}{\left(2x-3\right)\left(2x+3\right)}\)
= \(\frac{4x-6+10x-15+2x-33}{\left(2x-3\right)\left(2x+3\right)}\)
= \(\frac{16x-54}{\left(2x-3\right)\left(2x+3\right)}\)
\(\frac{2}{2x+3}+\frac{5}{2x-3}-\frac{2x-33}{9-4x^2}\)\(=\frac{2}{2x+3}+\frac{5}{2x-3}+\frac{2x-33}{4x^2-9}\)
\(=\frac{2\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\frac{5\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)}+\frac{2x-33}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\frac{4x-6+10x+15+2x-33}{\left(2x+3\right)\left(2x-3\right)}=\frac{16x-24}{\left(2x+3\right)\left(2x-3\right)}=\frac{8\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}=\frac{8}{2x+3}\)
Ta có:
C = 13x2 + 4y2 - 12xy - 2x - 4y + 10
C = (9x2 - 12xy + 4y2) + 2(3x - 2y) + 1 + (4x2 - 8x + 4) + 5
C = (3x - 2y)2 + 2(3x - 2y) + 1 + 4(x2 - 2x + 1) + 5
C = (3x - 2y + 1)2 + 4(x - 1)2 + 5 \(\ge\)5 \(\forall\)x; y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-2y+1=0\\x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}2y=3x+1\\x=1\end{cases}}\) <=> \(\hept{\begin{cases}2y=3.1+1=4\\x=1\end{cases}}\)<=> \(\hept{\begin{cases}y=2\\x=1\end{cases}}\)
Vậy MinC = 5 <=> x = 1 và y = 2
SOS dao lam có thể sử dụng trong bài này!
Chú ý:
+)\(C=2\left(3x-2y+1\right)^2+5-\left(x-2y+3\right)\left(5x-2y-1\right)\)
+) \(C=8\left(x-1\right)^2+5+\left(x-2y+3\right)\left(5x-2y-1\right)\)
Vậy ta tìm được: \(C=\frac{C+C}{2}=\frac{2\left(3x-2y+1\right)^2+8\left(x-1\right)^2+10}{2}\)
\(=\left(3x-2y+1\right)^2+4\left(x-1\right)^2+5\ge5\)
Áp dụng định lý Bezout:
\(f\left(x\right)=x^3-3x^2+5x+2m\)chia hết cho g (x) = x + 1 nên:
\(f\left(-1\right)=0\)
\(\Rightarrow-1-3-5+2m=0\Leftrightarrow2m=9\Leftrightarrow m=\frac{9}{2}\)
Ta có:
\(2x\left(x+5\right)-x-5=0\)
=> \(2x\left(x+5\right)-\left(x+5\right)=0\)
=> \(\left(2x-1\right)\left(x+5\right)=0\)
=> \(\orbr{\begin{cases}2x-1=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-5\end{cases}}\)
2x(x+5)-x-5=0
2x(x+5)-(x+5)=0
(x+5)(2x-1)=0
TH1:x+5=0
x =-5
TH2:2x-1=0
2x =1
x = 1/2
Vậy x=-5 và x=1/2