Cho tam giác MNP vuông tại N. Biết MN= 6cm,NP= 8cm, đường cao NH. Qua H kẻ \(HC\perp MN\), \(HD\perp NP\)
a) CM HDNC là hình chữ nhật
b) CM NH.MP = MN.NP
c) Tính độ dài CD
d) Tính diện tích tam giác NMH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3x+5}{2\left(x-1\right)}+\frac{4}{x-2}=\frac{\left(3x+5\right)\left(x-2\right)+4\cdot2\left(x-1\right)}{2\left(x-1\right)\left(x-2\right)}=\frac{3x^2-6x+5x-10+8x-8}{2\left(x-1\right)\left(x-2\right)}\)
\(=\frac{3x^2+7x-18}{2\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{2x^2+1}{4x^2-2x}+\frac{3-3x}{1-2x}+\frac{3}{2x}=\frac{2x^2+1+4x\left(3-3x\right)+2\cdot3\left(1-2x\right)}{4x\left(1-2x\right)}=\frac{2x^2+1+12-12x+6-12x}{4x\left(1-2x\right)}\)\(=\frac{2x^2-24x+19}{4x\left(1-2x\right)}\)
Đề này... bạn xem lại đi. Chứ thế này thì dùng máy tính cũng không làm nổi T-T
Ta có : \(x^4-7x^2+y^2+16=2xy\)
=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)
=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)
Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)
=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)
=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)
Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)
Vậy A=8
a) \(A=\frac{3x^2+5}{x^2+1}=\frac{3\left(x^2+1\right)+2}{x^2+1}=3+\frac{2}{x^2+1}\)
để A nguyên =>\(x^2+1\inƯ\left(2\right)\)
\(\Leftrightarrow x^2\in\left\{0;1\right\}\)
\(\Leftrightarrow x\in\left\{0;\pm1\right\}\)
a) \(Q=\frac{x^4-x^2+2x+2}{x^4+x^3+x+1}\)
\(Q=\frac{x^2\left(x^2-1\right)+2\left(x+1\right)}{x^3\left(x+1\right)+\left(x+1\right)}\)
\(Q=\frac{x^2\left(x+1\right)\left(x-1\right)+2\left(x+1\right)}{\left(x+1\right)\left(x^3+1\right)}\)
\(Q=\frac{\left(x+1\right)\left[x^2\left(x-1\right)+2\right]}{\left(x+1\right)\left(x^3+1\right)}\)
\(Q=\frac{x^3-x^2+2}{x^3+1}\)
b) \(Q=\left|Q\right|=\frac{x^3-x^2+2}{x^3+1}\)
Ta có: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)
Tích 3 số nguyên liên tiếp chia hết cho 3 nên \(\left(x-1\right)x\left(x+1\right)⋮3\)
hay \(x^3-x⋮3\)
Tương tự \(y^3-y⋮3\);\(z^3-z⋮3\)
\(\Rightarrow x^3+y^3+z^3-\left(x+y+z\right)⋮3\)
Mà \(\left(x+y+z\right)⋮3\left(gt\right)\Rightarrow a^3+b^3+c^3⋮3\left(đpcm\right)\)
\(x^2+5y^2+2y-4xy-3=0.\)
\(\Rightarrow x^2-4xy+4y^2+y^2+2y-3=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vậy cặp số x,y nhỏ nhất thỏa mãn là \(\hept{\begin{cases}x-2y=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y=0\\y=-1\end{cases}\Rightarrow}\hept{\begin{cases}x+2=0\\y=-1\end{cases}}}\)
\(\Rightarrow x=-2;y=-1\)
\(x^2+5y^2+2y-4xy-3=0\)
=> \(\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
=> \(\left(x-2y\right)^2+\left(y+1\right)^2-2^2=0\)
=> \(\left(x-2y\right)^2+\left(y+1-2\right)\left(y+1+2\right)=0\)
=> \(\left(x-2y\right)^2+\left(y-1\right)\left(y+3\right)=0\)
Mà \(\left(x-2y\right)^2 \ge 0 \forall x\)
=> \(\left(y-1\right)\left(y+3\right)\le0\) Mặt khác \(y-1 < y+3 \)
=> \(\hept{\begin{cases}y-1\le0\\y+3\ge0\end{cases}}\)=> \(-3\le y\le1\) mà y nhỏ nhất
=> \(y=-3\)
Thay vào biểu thức, ta có \(\left(x+6\right)^2+\left(-3-1\right)\left(-3+3\right)=0\) => \(\left(x+6\right)^2=0\) => \(x+6=0\) => \(x=-6\)
Vậy x=-6 , y=-3
a. Ta có:
\(\Delta MNP\)vuông tại \(N\left(gt\right)\)
\(\Rightarrow\widehat{N}=90^0\)
\(HC\perp MN\left(gt\right)\)
\(\Rightarrow\widehat{C}=90^0\)
\(HD\perp NP\left(gt\right)\)
\(\Rightarrow\widehat{D}=90^0\)
Xét tứ giác HDNC, ta có:
\(\widehat{N}=\widehat{C}=\widehat{D}\left(=90^0\right)\left(cmt\right)\)
\(\Rightarrow HDNC\)là hình chữ nhật (dhnb)
b, xét ΔMHN và ΔMNP có : ^P chung
^PNM = ^NHM = 90
=> ΔMHN ~ ΔMNP (g-g)
=> NH/MN = NP/MP
=> NH.MP = MN.NP