K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

Cho hai đa thức:

     M(x) = 2x^{3}-9x+5 và N(x) = 2x^{3}+4x^{2}-3

a) Tính M(x) - N(x)            b) Tính N(x) - M(x)

a, Ta có : \(M\left(x\right)-N\left(x\right)=\left(2x^3-9x+5\right)-\left(2x^3+4x^2-3\right)\)

\(=2x^3-9x+5-2x^3-4x^2+3\)

\(=\left(2x^3-2x^3\right)-9x-4x^2+\left(5+3\right)\)

\(=0-4x^2-9x+8=-4x^2-9x+8\)

b, Ta có : \(N\left(x\right)-M\left(x\right)=\left(2x^3+4x^2-3\right)-\left(2x^3-9x+5\right)\)

\(=2x^3+4x^2-3-2x^3+9x-5\)

\(=\left(2x^3-2x^3\right)+4x^2+9x-\left(3+5\right)\)

\(=4x^2+9x-8\)

21 tháng 8 2020

a) Ta có: x - y = 2( x + y )

=> x - y = 2x + 2y

=> x - 2x = 2y + y

=> -x = 3y

=> x : y = -1/3 

Mà x - y = 2( x + y) = x : y

=> x - y = 2( x + y) = x : y = -1/3

=> x + y = -1/3 : 2 = -1/6

=> x = ( -1/6 - 1/3 ) : 2 = -1/4

=> y = -1/6 + 1/4 = 1/12

Vậy x = -1/4; y = 1/12

21 tháng 8 2020

vì Ox' là tia đối của Ox, Oy' là tia đối của Oy

=> ^xOy LÀ góc đối đỉnh với ^x'Oy'

=> xOy = x'Oy'

21 tháng 8 2020

Xét tg vuông ABD ta có ^ADB luôn là góc nhon => ^BDC luôn là góc tù và là góc lớn nhất trong tg BCD

=> BC>BD (Trong tg cạnh đối diện với góc lớn nhất là cạnh có độ dài lớn nhất)

21 tháng 8 2020

\(\left(x-\frac{3}{5}\right)=\frac{2}{5}×-\frac{1}{3}\)

\(\left(x-\frac{3}{5}\right)=-\frac{2}{165}\)

\(x=-\frac{2}{165}+\frac{3}{5}\)

\(x=\frac{97}{165}\)

vậy \(x=\frac{97}{165}\)

\(x×\left(\frac{3}{7}+\frac{2}{3}\right)=\frac{10}{21}\)

\(x×\frac{23}{21}=\frac{10}{21}\)

\(x=\frac{10}{21}:\frac{23}{21}\)

\(x=\frac{10}{23}\)

vậy \(x=\frac{10}{23}\)

21 tháng 8 2020

\(\left(x-\frac{3}{5}\right):\frac{-1}{3}=\frac{2}{5}\)

=> \(x-\frac{3}{5}=\frac{2}{5}\cdot\left(-\frac{1}{3}\right)=-\frac{2}{15}\)

=> \(x=-\frac{2}{15}+\frac{3}{5}=-\frac{2}{15}+\frac{9}{15}=\frac{7}{15}\)

\(\frac{3}{7}x-\frac{2}{3}x=\frac{10}{21}\)

=> \(\left(\frac{3}{7}-\frac{2}{3}\right)x=\frac{10}{21}\)

=> \(-\frac{5}{21}x=\frac{10}{21}\)

=> \(x=\frac{10}{21}:\frac{-5}{21}=\frac{10}{21}\cdot\frac{-21}{5}=-2\)

Hai bài của ☆luffy cute☆ đều sai hết , xem xét lại đi nhé

21 tháng 8 2020

=>    \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

=>    \(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=>   \(\frac{x}{4}=2;\frac{y}{6}=2;\frac{z}{9}=2\)

=>    \(x=8;y=12;z=18.\)

21 tháng 8 2020

Ta có \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{2}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{6}\\\frac{y}{6}=\frac{z}{9}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\)

Lại có x + y + z = 38

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x+y+z}{4+6+9}=\frac{38}{19}=2\)

=> x = 8 ; y = 12 ; z = 18

21 tháng 8 2020

Có:    \(\frac{x}{2}=\frac{y}{3}\)

=>   \(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)

=>   \(\hept{\begin{cases}4x=16\\3y=18\end{cases}}\)

=>   \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)

\(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\) và \(4x-3y=-2\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)

\(\Leftrightarrow4x=8.2=16\Leftrightarrow16\div4=4\)

\(\Leftrightarrow3y=2.9=18\Leftrightarrow y=18\div3=6\)

Vậy \(x=4;y=6\)

21 tháng 8 2020

a) \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow a=b=c\)

21 tháng 8 2020

a. \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

kết quả bằng -1.05169894