Tìm số tự nhiên a biết rằng:286 chia cho a thì dư 48,còn 969 chia cho a thì dư 17
giúp với pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiệu số phần bằng nhau:
19 - 1 = 18 (phần)
Số lớn là:
19,98 : 18 × 19 = 21,09
Số bé là:
21,09 - 19,98 = 1,11
Cô bổ sung thêm sơ đồ vào cho em rồi đó Nhân
A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)
Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)
TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1
TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)
TS = 2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))
A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)
A = 2023
Lời giải:
a. Thể tích cái bánh: $6\times 8\times 3:2=72$ (cm3)
b.
Độ dài cạnh chéo miếng bánh: $\sqrt{6^2+8^2}=10$ (cm)
Diện tích vật liệu cần dùng chính là diện tích toàn phần của cái bánh và bằng:
$6.8+6.3+3.8+10.3=120$ (cm2)
Lời giải:
$x^2=4.4.4.4=16.16=(-16)(-16)=16^2=(-16)^2$
$\Rightarrow x=16$ hoặc $x=-16$.
Hiệu số phần bằng nhau:
19 - 1 = 18 (phần)
Số lớn là:
19,98 : 18 × 19 = 21,09
Số bé là:
21,09 - 19,98 = 1,11
Hiệu số phần bằng nhau là
(phần)
Số bé là
Số lớn là
Đáp số : Số lớn : , Số bé :
a) 7 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ n ∈ {-5; 1; 3; 9}
Mà n là số tự nhiên
⇒ n ∈ {1; 3; 9}
b) n + 2 = n - 4 + 6
Để (n + 2) ⋮ (n - 4) thì 6 ⋮ (n - 4)
⇒ n - 4 ∈ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
⇒ n ∈ {-2; 1; 2; 3; 5; 6; 7; 10}
Mà n là số tự nhiên
⇒ n ∈ {1; 2; 3; 5; 6; 7; 10}
a) 7⋮n-2
=> n-2ϵƯ(7)={-1;1;-7;7}
=> nϵ{1;3;-5;9}
Vậy n ϵ{1;3;-5;9}
b) n + 2 ⋮ n + 4
=> n + 4 - 2 ⋮ n + 4
mà n + 4 ⋮ n + 4
=> 2 ⋮ n + 4 rồi làm như trên nhé
Lời giải:
Theo đề thì:
$286-48\vdots a;969-17\vdots d$
$\Rightarrow 238\vdots a; 952\vdots a$
$\Rightarrow a=ƯC(238,952)$
$\Rightarrow ƯCLN(238,952)\vdots a$
$\Rightarrow 238\vdots a$
$\Rightarrow a\in \left\{1; 2; 7; 17; 14; 34; 119; 238\right\}$