K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Đây là dạng toán về: Nguỵ biện về Toán học. 
Nguỵ biện là sự cố ý suy luận sai, nhưng làm như là đúng. Chẳng hạn như : 1 + 1 =3 
Bài toán có thể suy luận như sau: 
Giải 
1 + 1 = 3 
2 = 3 
Gỉa sử ta có đẳng thức: 
14 + 6 - 20 = 21 + 9 - 30 
Đặt thừa số chung ta có: 
2 x ( 7 + 3 - 10 ) = 3 x ( 7 + 3 - 10 ) 
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau. 
Do đó: 
2 = 3 
Giải thích: 
Sự thật 2 không thể bằng 3. Sai lầm trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng. 
Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a x 0 = b x 0 với bất kì giá trị nào của a và b. 
Vì vậy, ta không thể khẳng định được rằng a = b 

( Từ ví dụ trên, bạn có thể tìm những sai lầm trong các " chứng minh ". )

7 tháng 2 2019

Trả lời.........

Chứng minh

1+1=3 khi sai

..............học tốt...............

7 tháng 2 2019

có tồn tại

7 tháng 2 2019

A B C O H M N P D E F

Gọi giao điểm thứ hai của AH,BH,CH với đường tròn (O) thứ tự là D,E,F. Gọi OD cắt BC tại M, OE cắt CA tại N, OF cắt AB tại P.

Ta sẽ chứng minh 3 điểm M,N,P nói trên thỏa mãn đồng thời 2 điều kiện của đề:

+) ĐK 1: MH + MO = NH + NO = PH + PO

Ta có: ^BDH = ^BDA = ^BCA = ^BHD => \(\Delta\)HBD cân tại B => BH = BD. Tương tự: CH = CD

Do đó: BC là trung trực của HD. Vì M thuộc BC nên MH = MD => MH + MO = MD + MO = OD = R

Chứng minh tương tự ta được: MH + NO = NH + NO = PH + PO = R (R là bán kính đường tròn (O)) (Thỏa mãn)

+) ĐK 2: AM,BN,CP đồng quy (Đặt 1800 - 2.^BAC = \(\alpha\); 1800 - 2.^ABC = \(\beta\); 1800 - 2.^ACB = \(\gamma\))

Đường tròn (O) có: ^BOD và ^BAD là góc ở tâm và góc nội tiếp cùng chắn (BD => ^BOD = 2.^BAD

Hay ^BOM = 2.(900 - ^ABC) = 1800 - 2.^ABC. Tương tự: ^COM = 1800 - 2.^ACB

Áp dụng ĐL hàm Sin: \(\frac{BM}{CM}=\frac{\sin\widehat{BOM}}{\sin\widehat{COM}}=\frac{\sin\beta}{\sin\gamma}\)Tương tự: \(\frac{AP}{BP}=\frac{\sin\alpha}{\sin\beta};\frac{CN}{AN}=\frac{\sin\gamma}{\sin\alpha}\)

Từ đó: \(\frac{AP}{BP}.\frac{BM}{CM}.\frac{CN}{AN}=\frac{\sin\alpha}{\sin\beta}.\frac{\sin\beta}{\sin\gamma}.\frac{\sin\gamma}{\sin\alpha}=1\)

Theo điều kiện đủ của ĐL Céva thì 3 đường thẳng AM,BN,CP đồng quy (Thỏa mãn)

Vậy nên tồn tại 3 điểm M,N,P là 3 điểm thỏa mãn bài.

7 tháng 2 2019

B A X Y Z K H E F T I

Gọi I là giao điểm của AX và BY.

Ta có: ^XAY = ^YBX = 900 => Tứ giác ABXY nội tiếp đường tròn đường kính XY => ^BAX = ^BYX

Mà ^BYX = ^BHX nên ^BAX = ^BHX => \(\Delta\)XHB ~ \(\Delta\)XBA (g.g) => XB2 = XH.XA

Hay XZ2 = XH.XA => \(\Delta\)XHZ ~ \(\Delta\)XZA (c.g.c) => ^XZH = ^XAZ => ^XEZ = ^XAZ

=> Tứ giác AEXZ nội tiếp => ^AXE = ^AZE = 1800 - ^XZE - ^YZA = 1800 - ^XAZ - ^YAZ = 1800 - ^XAY = 900

=> ^AXE = ^XAY (=900) => XE // YA. Tương tự: XB // YF => ^BXE = ^FYA

Mà 2 tam giác BXE và FYA cân tại các đỉnh X và Y nên \(\Delta\)BXE ~ \(\Delta\)FYA (g.g)

=> \(\frac{BE}{FA}=\frac{XE}{YA}=\frac{XB}{YA}=\frac{IB}{IA}\)(Do \(\Delta\)BIX ~ \(\Delta\)AIY).

Đồng thời: BE,FA là cặp cạnh tương ứng của \(\Delta\)BXE ~ \(\Delta\)FYA . Mà XE // YA, XB // YF nên BE // FA

Áp dụng hệ quả ĐL Thales: \(\frac{BE}{FA}=\frac{TB}{TA}\). Từ đó: \(\frac{IB}{IA}=\frac{TB}{TA}\)=> IT là phân giác ^AIB (1)

Mặt khác: \(\frac{IX}{IY}=\frac{BX}{AY}=\frac{BZ}{AZ}\)=> BZ là phân giác ^XIY    (2)

Từ (1) và (2), kết hợp với ^AIB, ^XIY đối đỉnh => Z,I,T thẳng hàng => ZT đi qua I

Do đó: 3 đường thẳng XA,YB,ZT đồng quy (đpcm).

7 tháng 2 2019

Áp dụng BĐT Cauchy-schwarz ta có:

\(P=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{9}{3+ab+bc+ca}\ge\frac{9}{3+12}=\frac{3}{5}\)

Dấu " = " xảy ra <=> a=b=c=2

7 tháng 2 2019

Áp dụng BĐT AM-GM,ta có:

\(P\ge3\sqrt[3]{\frac{1}{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}}=\frac{3}{\sqrt[3]{\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)}}\)

\(\ge\frac{3}{\frac{\left(3+ab+bc+ca\right)}{3}}=\frac{9}{3+ab+bc+ca}\)

Ta có BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)

Áp dụng vào,ta có: \(P\ge\frac{9}{3+ab+bc+ca}\ge\frac{9}{3+a^2+b^2+c^2}=\frac{9}{15}=\frac{3}{5}\)

8 tháng 5 2020

\(\hept{\begin{cases}4\sqrt{x+1}-xy\sqrt{y^2+4}=0\left(1\right)\\\sqrt{x^2-xy^2+1}+3\sqrt{x-1}=xy^2\left(2\right)\end{cases}}\)

\(ĐK:\hept{\begin{cases}x\ge1\\x^2-xy^2+1\ge0\end{cases}}\), kết hợp với phương trình (1) ta có y > 0

Từ (1) suy ra \(4\sqrt{x+1}=xy\sqrt{y^2+4}\)

\(\Leftrightarrow16\left(x+1\right)=x^2y^2\left(y^2+4\right)\Leftrightarrow\left(y^4+4y^2\right)x^2-16x-16=0\)

Giải phương trình theo ẩn x, ta được: \(x=\frac{4}{y^2}\)hoặc \(x=\frac{-4}{y^2+4}< 0\)(loại)

Với \(x=\frac{4}{y^2}\Leftrightarrow xy^2=4\)thay vào phương trình (2), ta được \(\sqrt{x^2-3}+3\sqrt{x-1}=4\)(*)

\(ĐK:x\ge\sqrt{3}\), ta có: (*)\(\Leftrightarrow\left(\sqrt{x^2-3}-1\right)+3\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2-3}+1}+\frac{3\left(x-2\right)}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2-3}+1}+\frac{3}{\sqrt{x-1}+1}\right)=0\)

Dễ thấy \(\frac{x+2}{\sqrt{x^2-3}+1}+\frac{3}{\sqrt{x-1}+1}>0\forall x\ge\sqrt{3}\)nên x - 2 = 0\(\Leftrightarrow x=2\)

Với x = 2, ta có: \(\hept{\begin{cases}y^2=2\\y>0\end{cases}}\Leftrightarrow y=\sqrt{2}\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x;y\right)=\left(2;\sqrt{2}\right)\)

Bài 1 : Một công nhận dự kiến hoàn thành 1 công việc  trong 1 thời gian quy định với năng suất 12 sản phẩm trong 1 giờ . Sau khi làm xong một nửa công việc người đo tăng năng suất mỗi giờ làm được 15 sản phẩm . Nhờ đó công việc được hoàn thành sớm hơn dự định 1 giờ . Tính số sản phẩm người công nhân đó phải làm ?Bài 2 : Một ô tô đi từ A->B cách nhau 60km trong 1 thời gian quy định ....
Đọc tiếp

Bài 1 : Một công nhận dự kiến hoàn thành 1 công việc  trong 1 thời gian quy định với năng suất 12 sản phẩm trong 1 giờ . Sau khi làm xong một nửa công việc người đo tăng năng suất mỗi giờ làm được 15 sản phẩm . Nhờ đó công việc được hoàn thành sớm hơn dự định 1 giờ . Tính số sản phẩm người công nhân đó phải làm ?

Bài 2 : Một ô tô đi từ A->B cách nhau 60km trong 1 thời gian quy định . Trên nửa quãng đường đầu ô tô đi với vận tốc kém vận tốc dự định mỗi giờ 6km . Trễn nữa quãng đường sau , ô tô đi với vận tốc lớn hơn vận tốc dự định mỗi giờ 10km do đó ô tô đã đến B đúng thời gian quy định . Tính thời gian quy định để ô tô đi từ A->B ?

Bài 3 : Tìm 1 số tự nhiên có 2 chữ số biết tổng bình phương 2 chữ số ấy là số 20 . Mặt khác nếu ta đổi chỗ 2 chữ số ấy cho nhau ta được số lớn hơn số ban đầu 18 đơn vị  


 

0