\(\sqrt{\left(x+1\right)^2}=6;\sqrt{\left(5x+1\right)}^2=\dfrac{6}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (học sinh) là số học sinh cần tìm (x ∈ ℕ* và 10 < x < 50)
Do khi đem số học sinh chia 6 thì dư 3 nên x - 3 ∈ B(6) = {0; 6; 12; 18; 24; 30; 36; 42; 48; 54; ...}
⇒ x ∈ {3; 9; 15; 21; 27; 33; 39; 45; 51; 57; ...}
Do 33 chia 7 dư 5 và 10 < x < 50
⇒ x = 33
Vậy số học sinh cần tìm là 33 học sinh
Vậy ta thấy, nếu cửa hàng làm phần bánh loại A và phần bánh loại B thì sẽ đạt được lợi nhuận cao nhất.
Gọi , y$ lần lượt là số phần bánh loại A và loại B mà cửa hàng làm ra.
Theo đề bài, ta thấy
Để làm ra phần bánh loại A cần gam bột, gam đường và gam nhân bánh;
Để làm ra phần bánh loại B cần gam bột, gam đường và gam nhân bánh.
Lợi nhuận của cửa hàng là ( nghìn đồng).
Theo đề bài, ta có hệ bất phương trình
Biểu diễn lên hệ trục , ta có miền nghiệm là tứ giác , kể cả các cạnh của tứ giác (như hình vẽ) với , .
Ta tính lợi nhuận của cửa hàng tại tọa độ các đỉnh của miền nghiệm:
nghìn đồng; nghìn đồng
nghìn đồng; nghìn đồng
Vậy ta thấy, nếu cửa hàng làm phần bánh loại A và phần bánh loại B thì sẽ đạt được lợi nhuận cao nhất.
Để A ∩ B có đúng 4 phần tử nguyên thì:
m - 1 < -1; m + 5 ≥ 2 và m ∈ Z
*) m - 1 < -1
m < 0
*) m + 5 ≥ 2
m ≥ 2 - 5
m ≥ -3
Vậy -3 ≤ m < 0 và m ∈ Z thì A ∩ B có đúng 4 phần tử nguyên
đoạn A=[-1;2] có 4 phần tử nguyên là {-1;0;1;2}
Với , có các phần tử nguyên là: .
Để có đúng phần tử nguyên thì .
Vậy có giá trị nguyên của thỏa mãn đề bài.
a) Liệt kê các phần tử của tập hợp
Ta có: .
Do đó: .
b) Cho hai tập hợp và . Xác định tập .
Ta có:
⚡.
⚡.
Suy ra .
Số thập phân có hai chữ số khác nhau có dạng:
\(\overline{a,b}\)
Trong đó a; b lần lượt có số cách chọn là: 10; 9
Số các số thập phân có hai chữ số khác nhau là:
10 x 9 = 90 (số)
Đáp số:...
Gọi a,b là số thập phân có hai chữ số cần tìm
a có 10 cách chọn
Mà b có thể bằng 0 nên b cũng có 10 cách chọn
Vậy có 10 × 10 = 100 số thỏa mãn đề bài
53 ha = ? km
Vì ha là đơn vị diện tích và km là đơn vị đo độ dài do vậy
Câu trả lời là không thể so sánh được em nhé!
1, 17.(-84) + 17.(-16)
= - 17.84 - 17.16
= -17.(84 + 16)
= -17.100
= -1700
2; 15.(58) - 15.(48)
= 15.(58 - 48)
= 15. 10
= 150
3, -37.86 + 37.76
= -37.(86 - 76)
= -37.10
= - 370
4, 1975.(-115) + 1975.75
= 1975. (-115 + 75)
= 1975 .(-40)
= - 79000
5, 79.89 - 79.(-11)
= 79.(89 + 11)
= 79.100
= 7900
1, 17.(-84) + 17.(-16)
= - 17.84 - 17.16
= -17.(84 + 16)
= -17.100
= -1700
2; 15.(58) - 15.(48)
= 15.(58 - 48)
= 15. 10
= 150
3, -37.86 + 37.76
= -37.(86 - 76)
= -37.10
= - 370
4, 1975.(-115) + 1975.75
= 1975. (-115 + 75)
= 1975 .(-40)
= - 79000
5, 79.89 - 79.(-11)
= 79.(89 + 11)
= 79.100
= 7900
(\(x\) + 1).(\(x\) + 2).(\(x\) - 3).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x+1=0\\x+2=0\\x-3=0\\x-4=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=-1\\x=-2\\x=3\\x=4\end{matrix}\right.\)
Vì \(x\) \(\in\) N nên \(x\) \(\in\) {3; 4}
Tổng các số tự nhiên \(x\) thỏa mãn đề bài là:
3 + 4 = 7
√(x + 1)² = 6
|x + 1| = 6
*) Với x ≥ -1, ta có:
x + 1 = 6
x = 6 - 1
x = 5 (nhận)
*) Với x < -1, ta có:
x + 1 = -6
x = -6 - 1
x = -7 (nhận)
Vậy x = -7; x = 5
--------
√(5x + 1)² = 6/7
|5x - 1| = 6/7
*) Với x ≥ 1/5, ta có:
5x - 1 = 6/7
5x = 6/7 + 1
5x = 13/7
x = 13/7 : 5
x = 13/35 (nhận)
*) Với x < 1/5, ta có:
5x - 1 = -6/7
5x = -6/7 + 1
5x = 1/7
x = 1/7 : 5
x = 1/35 (nhận)
Vậy x = 1/35; x = 13/35