f) \(\frac{-18}{81}\)và \(\frac{-23}{114}\) g) \(\frac{-22}{35}\)và \(\frac{-103}{177}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mk với, còn nốt mấy câu so sánh này nữa thôi, ai nhanh mk k cho
a)
\(\frac{-17}{243}< 0\)
\(\frac{1}{1965}>0\)
\(\frac{-17}{243}< \frac{1}{1965}\)
b,
\(\frac{23}{-15}< 0\)
\(\frac{-17}{-49}>0\)
\(\frac{23}{-15}< \frac{-17}{-49}\)
c,
\(\frac{-2004}{2005}=-1+\frac{1}{2005}\)
\(\frac{-2005}{2006}=-1+\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)
Nên \(-1+\frac{1}{2005}>-1+\frac{1}{2006}\)
Vậy \(\frac{-2004}{2005}>\frac{-2005}{2006}\)
Các bạn giúp mk với, mk sắp phải nộp rồi. Ai nhanh nhất mk k cho
\(-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-..........-\frac{1}{2.1}\)
\(=-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+..........+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)
Sai đề: Sửa \(x-y-x=78\)thành \(x-y+z=78\)
Từ \(\frac{x}{y}=\frac{10}{9}\)\(\Rightarrow\frac{x}{10}=\frac{y}{9}\)(1)
Từ \(\frac{y}{z}=\frac{3}{4}\)\(\Rightarrow\frac{y}{3}=\frac{z}{4}\)\(\Rightarrow\frac{y}{3.3}=\frac{z}{4.3}\)\(\Rightarrow\frac{y}{9}=\frac{z}{12}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60\); \(y=6.9=54\); \(z=12.6=72\)
Vậy \(x=60\); \(y=54\); \(z=72\)
Sửa : \(x-y-z=78\)
Theo bài ra ta có :
\(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9}\)(*)
\(\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\)(**)
Lại có : \(\frac{x}{30}=\frac{y}{27}\)(***)
\(\frac{y}{27}=\frac{z}{36}\)(****)
Từ (*) ; (**) ; (***) ; (****) =)) \(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y-z}{30-27-36}=\frac{78}{-33}\)
Tự thay ...
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
\(C=\left|x-2010\right|+\left|x-1963\right|\)
\(=\left|x-2010\right|+\left|1963-x\right|\ge\left|x-2010+1963-x\right|=47\)
Hay : \(C\ge47\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2010\right)\left(1963-x\right)\ge0\)
\(\Leftrightarrow1963\le x\le2010\)
Vậy giá trị nhỏ nhất của \(C=47\) khi \(1963\le x\le2010\)
Ta có: \(C=\left|x-2010\right|+\left|x-1963\right|\)
\(C=\left|x-2010\right|+\left|1963-x\right|\)
\(\ge\left|x-2010+1963-x\right|\)
\(=\left|-47\right|=47\)
Dấu "=" xảy ra khi: \(\left(x-2010\right)\left(1963-x\right)\ge0\)
=> \(1963\le x\le2010\)
Vậy Min(C) = 47 khi \(1963\le x\le2010\)
a) (-0,125)3 . (-8) = (-0,125). (-0,125)2 . (-8) = [(-0,125) . (-8)] . (-0,125)2 = 1.1/64 = 1/64
b) \(\frac{27^{15}}{9^{21}}=\frac{\left(3^3\right)^{15}}{\left(3^2\right)^{21}}=\frac{3^{45}}{3^{42}}=3^3=27\)
c) \(\left(-2,5\right)^3+\frac{2496^5}{\left(-832\right)^5}-\frac{98^{17}}{98^{16}}=-\frac{125}{8}+\left(-243\right)-98=-\frac{2853}{8}\)
d) \(\left(1-\frac{1}{3}-\frac{1}{6}\right)^2\cdot\left(16^{37}:2^{145}-1963^0\right)=\left(\frac{6}{6}-\frac{2}{6}-\frac{1}{6}\right)^2\left(16^{37}:2^{145}-1963^0\right)\)
\(\left(\frac{1}{2}\right)^2\cdot7=\frac{1}{4}\cdot7=\frac{7}{4}\)
a) \(\left(-0,125\right)^3.\left(-8\right)=\left(\frac{-1}{8}\right)^3.\left(-8\right)=\left(\frac{-1}{8}\right)^3\div\left(\frac{-1}{8}\right)=\left(\frac{-1}{8}\right)^2=\frac{1}{64}\)
b) \(27^{15}\div9^{21}=\left(3^3\right)^{15}\div\left(3^2\right)^{21}=3^{45}\div3^{42}=3^3=27\)
c) \(\left(-2,5\right)^3+2496^5\div\left(-832\right)^5-98^{17}\div98^{16}=\left(\frac{-5}{2}\right)^3-3^5-98\)
\(=\left(\frac{-125}{8}\right)-243-98=\frac{-2853}{8}\)
d) \(\left(1-\frac{1}{3}-\frac{1}{6}\right).\left(16^{37}\div2^{125}-1963^0\right)=\frac{1}{2}.\left[\left(2^4\right)^{37}\div2^{125}-1\right]\)
\(=\frac{1}{2}.\left[2^{148}\div2^{125}-1\right]=\frac{1}{2}.\left[2^{23}-1\right]=\frac{2^{23}-1}{2}\)
Ta có \(\frac{3}{7}< \frac{3,5}{7}=\frac{1}{2}=\frac{7,5}{15}< \frac{11}{15}\)
Vậy \(\frac{3}{7}< \frac{11}{15}\)
Bài giải
Ta quy đồng 2 phân số :
\(\frac{3}{7}=\frac{3\times15=45}{7\times15=105}\)
\(\frac{11}{15}=\frac{11\times7=77}{15\times7=105}\)
Mà \(\frac{45}{105}< \frac{77}{105}\)nên \(\frac{3}{7}< \frac{11}{15}\).
Giải nhiều đề học sinh giỏi ( điều kiện thời gian làm bài ít hơn đi thi để tránh bị làm bài chậm trong phòng thi )
Đọc các công thúc toán nâng cao
Đấy là hai cách tương đối phổ biến
Còn các bạn '' Thiên tài '' còn cách nào thì chia sẻ nhé ^_^
câu cuối đây rồi. giúp mk nốt nha, câu cuối đó