K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

cứ làm đi 3 con tích sẽ về ngay tay bn

30 tháng 8 2020

Bài 1:

G/s ngược lại: \(ad=bc\) , ta cần CM giả thiết.

Ta có: \(ad=bc\) => \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) \(\left(k\inℤ\right)\)

Thay vào:

\(\left(a+b+c+d\right)\left(a-b-c+d\right)\)

\(=\left(bk+b+dk+d\right)\left(bk-b-dk+d\right)\)

\(=\left(k+1\right)\left(b+d\right)\left(k-1\right)\left(b-d\right)\) (1)

\(\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(=\left(bk-b+dk-d\right)\left(bk+b-dk-d\right)\)

\(=\left(k-1\right)\left(b+d\right)\left(k+1\right)\left(b-d\right)\) (2)

Từ (1) và (2) => GT được CM => đpcm

30 tháng 8 2020

H M B A C D E I

30 tháng 8 2020

a) tính thường

b) \(\left(x-1\right)\left(x+2\right)< 0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow1< x< -2\left(ktm\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\left(tm\right)\)

vậy

c)\(\left(x+\frac{3}{5}\right)\left(x+1\right)< 0\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Leftrightarrow-1< x< -\frac{3}{5}\left(tm\right)\)

d) \(\left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Leftrightarrow x>\frac{1}{3}\left(tm\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\Leftrightarrow x< \frac{-2}{5}\left(tm\right)\)

vậy ...

30 tháng 8 2020

a) 5/2 - x + 4/5 = 2/3 + 4/7

<=> 33/10 - x = 26/21

<=> x = 433/210

b) ( x - 1 )( x + 2 ) < 0 ( cái " x " kia là nhân à :v )

Xét 2 trường hợp

1.\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\)( loại )

2. \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Rightarrow-2< x< 1\)

Vậy -2 < x < 1

c) ( x + 3/5 )( x + 1 ) < 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Rightarrow-1< x< -\frac{3}{5}\)

2. \(\hept{\begin{cases}x+\frac{3}{5}>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-\frac{3}{5}\\x< -1\end{cases}}\)( loại )

Vậy -1 < x < -3/5

d) ( x - 1/3 )( x + 2/5 ) > 0

Xét hai trường hợp :

1.\(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Rightarrow x>\frac{1}{3}\)

2.\(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\Rightarrow}x< -\frac{2}{5}\)

Vây \(\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\)

30 tháng 8 2020

a) Vì tam giác ABC vuông tại A. 

=> AB + AC = BC

Thay số: 6 + 8 =BC

=> BC= 14 cm

b) Vì 8 cm >6cm  Mà cạnh AB đối diện với góc ACB, cạnh AC đối diện với góc ABC 

=> Góc ABC > góc ACB

c) Xét 2 tam giác ABD và HBD có: 

+ AB = AC (Giả thiết)

+ BD là cạnh chung

+ Góc BAD = góc BHD = 90 độ (GT)

=> Tam giác ABD= t/g HBD(cạnh huyền- cạnh góc vuông)

=> Góc ABD= góc HBD(hai cạnh tương ứng)

=> BD là tia phân giác của ABC

d) Vì Tam giác BHD = t/g BAD => AD = HD (2 cạnh tương ứng)

Xét 2 t/g EDA , CDH có :

+ Góc EDA = góc HDG ( 2 góc đối đỉnh)

+ DA = DH ( cmt )

+ Góc EAD = góc CHD  =90 độ (GT) 

=> T/g EDA = t/g CDH (g-c-g)

=> ED = CD (2 cạnh tương ứng)

=. T/g EDC cân tại D

20 tháng 3 2022

CÂU A BẠN LÀM SAI R

 

30 tháng 8 2020

Bài làm:

Ta có: \(\left|x+1\right|+\left|x-3\right|+\left|x-5\right|\)

\(=\left(\left|x+1\right|+\left|x-5\right|\right)+\left|x-3\right|\)

\(=\left(\left|x+1\right|+\left|5-x\right|\right)+\left|x-3\right|\)

\(\ge\left|x+1+5-x\right|+0=6\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)\left(5-x\right)\ge0\\\left|x-3\right|=0\end{cases}}\) => \(x=3\)

Vậy \(Min=6\Leftrightarrow x=3\)

30 tháng 8 2020

| x + 1 | + | x - 3 | + | x - 5 |

= | x + 1 | + | x - 3 | + | -( x - 5 ) |

= | x + 1 | + | x - 3 | + | 5 - x |

= | x - 3 | + ( | x + 1 | + | 5 - x | )

Ta có : | x - 3 | ≥ 0 

            | x + 1 | + | 5 - x | ≥ | x + 1 + 5 - x | = | 6 | = 6 ( áp dụng bđt | a | + | b | ≥ | a + b |

                                                                                     đẳng thức xảy ra <=> ab ≥ 0 )

=> | x - 3 | + ( | x + 1 | + | 5 - x | ) ≥ 6

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\\left(x+1\right)\left(5-x\right)\ge0\end{cases}}\)

+) x - 3 = 0 => x = 3 (1)

+) ( x + 1 )( 5 - x ) ≥ 0 

1. \(\hept{\begin{cases}x+1\ge0\\5-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\-x\ge-5\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le5\end{cases}}\Rightarrow-1\le x\le5\)(2)

2. \(\hept{\begin{cases}x+1\le0\\5-x\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-1\\-x\le-5\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge5\end{cases}}\)( loại )

Từ (1) và (2) => x = 3

Vậy GTNN của biểu thức = 6 <=> x = 3

30 tháng 8 2020

\(a.3,2.x+\left(-1,2\right).x+2,7=-4,9\)

    \(x.\left[3,2+\left(-1,2\right)+2,7\right]=-4,9\)

    \(x.4,7=-4,9\)

    \(x=-4,9+4,7\)

    \(x=-0,2\)

30 tháng 8 2020

a, 

3,2x - 1,2x = -4,9 - 2,7 

2x = -7,6 

x= -3,8 

b, 

5,6x + 2,9x = -9,8 + 3,38 

8,5x = -6,42 

\(x=\frac{-321}{425}\)    

30 tháng 8 2020

A = -5,13 : (25/28 - 8/9 . 1,25 + 16/63)

   = -5,13 : (25/28 - 10/9 + 16/63)

   = -5,13 : 1/28 = -3591/25 (-143,64)

B = (1 . 1,9 + 19,5 : 4/3) . (62/75 . 4/25)

   = ( 1,9 + 117/8 ) . 248/1875

  =  661/40 . 248/1875 = 2,185...

30 tháng 8 2020

câu trl là do bấm máy tính đó nheaaaa

31 tháng 8 2020

a) \(\left(\frac{5}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right)\cdot2\frac{2}{17}\right]\)

\(=\left(\frac{1}{5}-\frac{126}{125}\right):\frac{4}{7}:\left[\left(\frac{13}{4}-\frac{59}{9}\right)\cdot\frac{36}{17}\right]\)

\(=\left(\frac{25}{125}-\frac{126}{125}\right):\frac{4}{7}:\left[-\frac{119}{36}\cdot\frac{36}{17}\right]\)

\(=-\frac{101}{125}:\frac{4}{7}:\left(-7\right)=-\frac{101}{125}\cdot\frac{7}{4}\cdot\left(-\frac{1}{7}\right)=\frac{101}{500}\)

b) \(\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)

\(=\left(-\frac{1}{2}-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right)\cdot\left(-\frac{1}{2}\right)\)

\(=-\frac{11}{10}:\left(-3\right)+\frac{1}{3}-\frac{1}{12}\)

\(=\frac{11}{30}+\frac{1}{3}-\frac{1}{12}=\frac{37}{60}\)