Biết \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
CMR:\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=5x^2-3x+1\)
\(=\left(\sqrt{5}x\right)^2-2\sqrt{5}x.\frac{3}{2\sqrt{5}}+\frac{9}{20}+\frac{11}{20}\)
\(=\left(\sqrt{5}x-\frac{3}{2\sqrt{5}}\right)^2+\frac{11}{20}\ge\frac{11}{20}\forall x\)
Vậy \(M_{min}=\frac{11}{20}\Leftrightarrow\sqrt{5}x-\frac{3}{2\sqrt{5}}=0\Leftrightarrow x=\frac{3}{10}\)
kim loại M tạo ra hiđroxit M(OH3). Phân tử khối của M với oxi là 102. tính nguyên tử khối của M
hóa 8
theo đlbtkl ta có :
mM + m(OH)3 = mHidroxit
=> mM = 102 - 3(16 + 1)
=> mM = 53
\(a) Xét\ tứ\ giác\ ABDN\,\ có:\)
\(AB//DN(N∈ đường\ thẳng\ đi\ qua\ D\ và // với\ AB)\)
\(⇒ABDN\ là\ hình\ thang\)
\(Mà\ BAN=90^o\)
\(⇒ ABDN\ là\ hình\ thang\ vuông\)
\(b)Xét\ ΔADC, có:\)
\(DN⊥AC\ (DN//AB\ mà\ AB⊥AC)\)
\(CH⊥AD\)
\( Mà\ M\ là\ giao\ điểm\ của\ DN\ và\ CH\)
\(Do\ đó:\ M\ là\ trung\ tâm\ của\ ΔACD\)
\(bài\ làm\ lộn\ lỡ\ rồi\ sai\ rồi\ đừng\ chép\ sorry\)
\(\Leftrightarrow\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2+a.\left(b+c\right)}{b+c}+\frac{b^2+b.\left(c+a\right)}{c+a}+\frac{c^2+c.\left(a+b\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(dpcm\right)\)