Giải phương trình:
x3 - x2y + 2x - y = 2 (x,y là các số nguyên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+\frac{1}{x^2}-\frac{9}{2}\left(x+\frac{1}{x}\right)+7=0\)
<=> \(\left(x^2+\frac{1}{x^2}+2\right)-\frac{9}{2}\left(x+\frac{1}{x}\right)+5=0\)
,<=> \(\left(x+\frac{1}{x}\right)^2-\frac{9}{2}\left(x+\frac{1}{x}\right)+\frac{81}{16}-\frac{1}{16}=0\)
<=> \(\left(x+\frac{1}{x}-\frac{9}{4}\right)^2=\frac{1}{16}\)
<=> \(\orbr{\begin{cases}x+\frac{1}{x}-\frac{9}{4}=\frac{1}{4}\\x+\frac{1}{x}-\frac{9}{4}=-\frac{1}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x+\frac{1}{x}-\frac{5}{2}=0\\x+\frac{1}{x}-2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2-\frac{5}{2}x+1=0\\x^2-2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)=\frac{9}{16}\\\left(x-1\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-\frac{5}{4}\right)^2=\frac{9}{16}\\x-1=0\end{cases}}\)
<=> x - 5/4 = 3/4 hoặc x - 5/4 = -3/4
hoặc x = 1
<=> x = 2 hoặc x = 1/2
hoặc x = 1
Vậy S = {1/2; 1; 2}
a) \(9x^2-1=\left(3x+1\right)\left(2x-1\right)\)
\(\Rightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+1\right)=0\)
\(\Leftrightarrow x\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
b) \(\left(4x-3\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2-24x+9=4x^2-8x+4\)
\(\Leftrightarrow12x^2-16x+5=0\)
Ta có \(\Delta=16^2-4.12.5=16,\sqrt{\Delta}=4\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{16+4}{12}=\frac{5}{3}\\x=\frac{16-4}{12}=1\end{cases}}\)
\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^2-8\right)\)
\(\Leftrightarrow2x^3+8x^2+8x=2x^3-16\)
\(\Leftrightarrow8x^2+8x+16=0\)
\(\Leftrightarrow7x^2+\left(x+4\right)^2=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
ko vt lại đề
<=> x3-6x2+12x-8+9x2-1=x3+3x2+3x+1
<=>12x-9=3x+1
<=>9x-10=0
<=>x=10/9
\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
\(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)
\(\Leftrightarrow x^3+3x^2+12x-9=x^3+3x^2+3x+1\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{10}{9}\right\}\)