Tìm m sao cho với mọi x, ta có:
2x3−3x2+x+m2x3−3x2+x+m=(x+2)(2x2−7x+15)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A có GTNN thì\(-x^2+2x-4\) có GTLN
Mà \(-x^2+2x-4=-\left(x^2-2x+4\right)\)
Để \(-x^2+2x-4\)có GTLN thì\(x^2-2x+4\)có GTNN
Mà \(x^2-2x+4=x^2-2x+1+3=\left(x-1\right)^2+3\)
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+3\ge3\)
Dấu ''='' xảy ra khi \(x-1=0\Leftrightarrow x=1\)
Vậy biểu thức A có GTNN là 3 khi và chỉ khi \(x=1\)
a)
(x-2y)2 >= 0 V x,y
(y-2018)>=0 V y
=> P=(ghi lại đề) >= 0
vậy GTNN của p bằng 0
dấu "=" xảy ra (=) \(\hept{\begin{cases}x-2y=0\\y-2018=0\end{cases}}\left(=\right)\hept{\begin{cases}x=2y\\y=2018\end{cases}}\left(=\right)\hept{\begin{cases}y=2018\\x=4036\end{cases}}\)
b) (x+y-3)4 >= 0 V x,y
(x-2y)2 >= V x,y
=> Q=(ghi lại đề) >= 2018
vậy GTNN của Q bằng 2018
dấu "=" xảy ra (=) \(\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}\left(=\right)\hept{\begin{cases}x=2y\\3y=3\end{cases}}\left(=\right)\hept{\begin{cases}y=1\\x=2\end{cases}}\)
c)
(2x + 1/6)4>= 0 V x
=> N=(ghi lại đề) >= -2
vậy GTNN của N bằng -2
dấu "=" xảy ra (=) 2x+1/6=0
(=) 2x=-16
(=) x=-1/12
#Học-tốt
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Rightarrow\frac{x-2+5x+5}{\left(x+1\right)\left(2-x\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Rightarrow x-2+5x+5=15\)
\(\Rightarrow6x+3=15\Leftrightarrow6x=12\Leftrightarrow x=2\)
Vậy x = 2
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)
\(\Rightarrow x+10=0\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)
\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0
Vậy x = 2012
a, (x+1)/9 +1 + (x+2)/8 = (x+3)/7 + 1 + (x+4)/6 + 1
<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6
<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0
vì 1/9 +1/8 -1/7 - 1/6 khác 0
=> x+10=0
=> x=-10
\(\frac{3x+2}{x-1}+\frac{2x-4}{x+2}=5\)
<=> \(\frac{\left(3x+2\right)\left(x+2\right)+\left(x-1\right)\left(2x-4\right)}{\left(x-1\right)\left(x+2\right)}=5\)
<=> \(3x^2+8x+4+2x^2-6x+4=5\left(x^2+x-2\right)\)
<=> \(5x^2+2x+8=5x^2+5x-10\)
<=> \(5x^2-5x^2+2x-5x=-10-8\)
<=> \(-3x=-18\)
<=> \(x=6\)
Vậy S = {6}
\(\frac{3x+2}{x-1}+\frac{2x-4}{x+2}=5\)
\(\Leftrightarrow\frac{\left(3x+2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{\left(2x-4\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=5\)
\(\Leftrightarrow\frac{3x^2+6x+2x+4+2x^2-2x-4x+4}{\left(x+2\right)\left(x-1\right)}=5\)
\(\Leftrightarrow\frac{5x^2+2x+8}{\left(x+2\right)\left(x-1\right)}=5\)
\(\Leftrightarrow5x^2+2x+8=5\left(x^2-x+2x-2\right)\)
<=> 5x2+2x+8=5(x2+x-2)
<=>5x2+2x+8=5x2+5x-10
<=> 5x2-5x2+2x-5x=-10-8
<=> -3x=-18
<=> x=6