K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0

a) Xác định m để phương trình có một nghiệm x = 1.

b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.

7 tháng 4 2020

Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :

 \(x^3+mx^2-4x-4=0\)(1)

a) Thay \(x=1\), phương trình (1) trở thành :

\(1^3+m.1^2-4.1-4=0\)

\(\Leftrightarrow1+m-4-4=0\)

\(\Leftrightarrow m-7=0\)

\(\Leftrightarrow m=7\)

Vậy  \(x=1\Leftrightarrow m=7\)

b) Thay  \(m=7\), phương trình (1) trở thành :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)

13 tháng 2 2020

\(\text{Đặt:}x+1=a\Rightarrow\left(2a-1\right)\left(2a+1\right)a^2=\left(4a^2-1\right)a^2=18\Leftrightarrow4a^2\left(4a^2-1\right)=72\)

\(\Rightarrow4a^2=9\left(\text{bạn tự giải phương trình dạng:}k^2+k=72\right)\Rightarrow a^2=\frac{9}{4}\Leftrightarrow a=\pm\frac{3}{2}\)

13 tháng 2 2020

Đệ đặt khác :)

Đặt \(2x+2=k\Rightarrow x+1=\frac{k}{2}\)

\(pt\Leftrightarrow\left(t-1\right)\cdot\frac{t^2}{4}\cdot\left(t+1\right)=18\)

\(\Leftrightarrow\left(t^2-1\right)\cdot t^2=72\)

\(\Leftrightarrow t^4-t^2-72=0\)

\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)

Đến đây quá EZ

13 tháng 2 2020

Định nghĩa: 2 pt tương đương là hai pt có cùng một tập nghiệm

a) 3x+2=1    =>3x=-1 =>x=-1/3

     x+1=2/3   =>x=-1/3    

Vậy 3x+2=1 <=> x+1=2/3

b)    x+2=0           =>x=-2

    (x+2)(x-1)=0    =>\(x^2-x+2x-2=0\)    =>   \(x\left(x-1\right)+2\left(x-1\right)=0\)  =>\(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

=>\(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)Vậy 2 pt ko tương đương

13 tháng 2 2020

câu c bn ko bt lm ak

13 tháng 2 2020

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(-3t^2+9t+12=0\)

Ta có \(\Delta=9^2+4.3.12=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{-9+15}{-6}=-1\\t=\frac{-9-15}{-6}=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2=-1\left(L\right)\\x^2=4\end{cases}}\Rightarrow x=\pm2\)

Vậy x = 2 hoặc x =- 2

13 tháng 2 2020

\(-3x^4+9x^2+12=0\)\(\Leftrightarrow-3\left(x^4-3x^2-4\right)=0\)

\(\Leftrightarrow x^4-3x^2-4=0\)\(\Leftrightarrow\left(x^4+x^2\right)-\left(4x^2+4\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-4\left(x^2+1\right)=0\)\(\Leftrightarrow\left(x^2+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-2;2\right\}\)