a^2+b^2+c^2=0
Hãy chứng minh a^3+b^3-c^2\(\le\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)
\(\Rightarrow5x=6+2x\)
\(5x-2x=6\)
\(3x=6\)
\(x=2\)
Với \(x=2\), ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(10+30y=12+60y\)
\(10-12=60y-30y\)
\(30y=-2\)
\(y=-\frac{1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\).
Ta có: \(\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\); \(\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)
mà \(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\3y=-\frac{2}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)
Vậy \(x=\frac{5}{3}\)và \(y=-\frac{2}{15}\)
a) \(x^2-2=0\)
\(x^2\) \(=0+2\)
\(x^2\) \(=2\)
\(\Rightarrow x=2\)hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
b) \(2\sqrt{x}+3=11\)
\(2\sqrt{x}\) \(=11-3\)
\(2\sqrt{x}\) \(=8\)
\(\sqrt{x}\) \(=8:2\)
\(\sqrt{x}\) \(=4\)
\(\Rightarrow x\) \(=2\)
Vậy \(x=2\)
c) \(\left(3\sqrt{x+5}+5\right):2-20=-13\)
\(\left(3\sqrt{x+5}+5\right):2\) \(=-13+20\)
\(\left(3\sqrt{x+5}+5\right):2\) \(=7\)
\(3\sqrt{x+5}+5\) \(=\frac{7}{2}\)
\(3\sqrt{x+5}\) \(=\frac{7}{2}-5\)
\(3\sqrt{x+5}\) \(=\frac{7-10}{2}\)
\(3\sqrt{x+5}\) \(=-\frac{3}{2}\)
\(\sqrt{x+5}\) \(=-\frac{3}{2}:3\)
\(\sqrt{x+5}\) \(=-\frac{3}{2}\times\frac{1}{3}\)
\(\sqrt{x+5}\) \(=\frac{-3\times1}{2\times3}\)
\(\sqrt{x+5}\) \(=\frac{-1\times1}{2\times1}\)
\(\sqrt{x+5}\) \(=\frac{-1}{2}\)
Vì \(\sqrt{x+5}>0\)
\(\Rightarrow\sqrt{x+5}=\frac{-1}{2}\)(vô lí)
\(\Rightarrow\left(x+5\right)\in\varnothing\)
\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
a) x2 - 2 = 0
=> x2 = 2
=> \(x=\pm\sqrt{2}\)
Vậy \(x=\pm\sqrt{2}\)
b) \(2\sqrt{x}+3=11\)
=> \(2\sqrt{x}=8\)
=> \(\sqrt{x}=4\)
=> \(\sqrt{x}^2=4^2\)
=> x = 16
Vậy x = 16
c) \(\left(3\sqrt{x+5}+5\right):2-20=-13\)
=> \(\left(3\sqrt{x+5}+5\right):2=7\)
=> \(3\sqrt{x+5}+5=14\)
=> \(3\sqrt{x+5}=9\)
=> \(\sqrt{x+5}=3\)
=> \(\sqrt{x+5}^2=3^2\)
=> x + 5 = 9
=> x = 4
Vậy x = 4
\(\frac{2x-1}{3}=\frac{2-x}{-2}\)
\(\Rightarrow-2.\left(2x-1\right)=3.\left(2-x\right)\)
\(-4x+2=6-3x\)
\(-4x+3x=6-2\)
\(-x=4\Rightarrow x=-4\)
\(\frac{x}{4}=\frac{3}{10}\) ; \(\left|x+\frac{1}{5}\right|-4=-2\) ;
=> x . 10 = 4 . 3 => \(\left|x+\frac{1}{5}\right|=\left(-2\right)+4\)
=> x . 10 = 12 => \(\left|x+\frac{1}{5}\right|=2\)
=> x = 12 : 10 => \(\left|x+\frac{1}{5}\right|=\left|2\right|=\left|-2\right|\)
=> x = \(\frac{6}{5}\) => \(\orbr{\begin{cases}x+\frac{1}{5}=2\\x+\frac{1}{5}=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=2-\frac{1}{5}=\frac{9}{5}\\x=\left(-2\right)-\frac{1}{5}=\frac{-11}{5}\end{cases}}\)
Vậy x = \(\frac{6}{5}\) Vậy \(x\in\left\{\frac{9}{5};\frac{-11}{5}\right\}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
=> \(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2=\left(\frac{-1}{4}\right)^2\)
=> \(\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=\frac{-1}{4}\end{cases}}\)=> \(\orbr{\begin{cases}x=\frac{1}{4}-\frac{1}{2}=\frac{-1}{4}\\x=\frac{-1}{4}-\frac{1}{2}=\frac{-3}{4}\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{4};\frac{-3}{4}\right\}\)
Với a2 + b2 + c2 = 0 , a2 = b2 = c2 = 0 .
a3 + b3 - c3 = 0 + 0 - 0 = 0
\(a^3+b^3-c^2\le0\)
Ta có: a2\(\ge\)0; b2 \(\ge\)0; c2 \(\ge\)0
Mà a2+b2+c2=0
=> \(\hept{\begin{cases}a^2=0\\b^2=0\\c^2=0\end{cases}}\)=> \(\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}\)
Suy ra: a3+b3-c2=0
=> a3+b3-c2 \(\le\)0 (điều cần phải chứng minh)