K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

ĐKXĐ: \(x\ge0;x\ne4.\)

\(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}.\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}.\)

b) Để \(A=\frac{5}{4}\)\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{5}{4}\Leftrightarrow\frac{4\sqrt{x}}{4\left(\sqrt{x}-2\right)}-\frac{5\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-2\right)}=0\)

\(\Leftrightarrow\frac{4\sqrt{x}-5\sqrt{x}+10}{4\left(\sqrt{x}-2\right)}=0\Leftrightarrow-\sqrt{x}+10=0\)

\(\Leftrightarrow\sqrt{x}=10\Leftrightarrow x=100\left(tmđk\right).\)

Vậy để A=5/4 thì x=100

6 tháng 6 2019

Tự tìm ĐK nha

a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(A=\frac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b) \(A=\frac{5}{4}\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{5}{4}\)

\(\Leftrightarrow4\sqrt{x}=5\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow4\sqrt{x}=5\sqrt{x}-10\)

\(\Leftrightarrow\sqrt{x}=10\)

\(\Leftrightarrow x=100\)( thỏa mãn )

Vậy...

6 tháng 6 2019

Cách làm dài bạn thông cảm mình  nghĩ được có zậy thui ak :/

Ta có a, b là các số thực dương 

Từ \(a+3b=ab\Leftrightarrow\frac{1}{b}+\frac{3}{a}=1\ge2\sqrt{\frac{3}{ab}}.\)(bất đẳng thức Cauchy cho 2 số không âm)

\(\Leftrightarrow\frac{12}{ab}\le1\Leftrightarrow ab\ge12\)\(\Leftrightarrow84ab-72ab\ge144\Leftrightarrow84ab\ge72\left(ab+2\right)\)

\(\Leftrightarrow\frac{12ab}{ab+2}\ge\frac{72}{7}\left(1\right)\)

Ta có \(P=\frac{a^2}{1+3b}+\frac{9b^2}{1+a}\ge2\sqrt{\frac{a^2}{1+3b}\frac{9b^2}{1+a}}=\frac{6ab}{\sqrt{\left(1+a\right)\left(1+3b\right)}}\)(Bất đẳng thức Cauchy)

                                                      \(\ge\frac{6ab}{\frac{1+a+1+3b}{2}}=\frac{12ab}{a+3b+2}=\frac{12ab}{ab+2}\)(Bất đẳng thức Cauchy ngược dấu )

Kết hợp với (1) ta được :

\(P\ge\frac{12ab}{ab+2}\ge\frac{72}{7}.\)

Vậy giá trị nhỏ nhất của \(P=\frac{72}{7}\Leftrightarrow\hept{\begin{cases}a=3b\\a+3b=ab\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=2\end{cases}.}}\)

6 tháng 6 2019

a) \(\sqrt{11-2\sqrt{10}}\)

\(=\sqrt{10-2\sqrt{10}+1}\)

\(=\sqrt{\left(\sqrt{10}-1\right)^2}\)

\(=\sqrt{10}-1\)

b) \(\sqrt{21-6\sqrt{6}}\)

\(=\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}-\sqrt{3}\)

6 tháng 6 2019

b) có

\(17< 10,25\Rightarrow\sqrt{17}< 4,5\)

\(29< 20,15\Rightarrow\sqrt{19}< 4,5\)

\(\Rightarrow\sqrt{17}+\sqrt{19}< 4,5+4,5=9\)

8 tháng 6 2019

a) có \(27< 36\)nên \(\sqrt{27}< 6\)

\(\Rightarrow3\sqrt{27}< 18\)(1)

có \(19< 25\Rightarrow\sqrt{19}< 5\Rightarrow23-\sqrt{19}>18\)(2)

từ (1) và (2) suy ra 

\(23-\sqrt{19}>3\sqrt{27}\Rightarrow\frac{23-\sqrt{19}}{3}>\sqrt{27}\)

xin lỗi giờ mình mới nghĩ ra câu a

6 tháng 6 2019

\(b,\sqrt{\frac{2x-1}{x+3}}\)

\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)

Và \(\frac{2x-1}{x+3}\ge0\)

Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)

\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)

Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)

6 tháng 6 2019

\(a,\)\(\sqrt{\frac{1}{\left(x-3\right)^2}}\)

\(đk:\)\(\frac{1}{\left(x-3\right)^3}\ne0\)\(\Rightarrow\left(x-3\right)^3\ne0\)\(\Leftrightarrow x\ne3\)

Và \(\frac{1}{\left(x-3\right)}>0\Rightarrow x-3>0\)\(\Rightarrow x>3\)

Vậy để căn thức xác định thì x > 3

6 tháng 6 2019

\(\sqrt{8x-x^2-15}\)

\(=\sqrt{-\left(x^2-8x+15\right)}\)

\(=\sqrt{-\left(x^2-8x+16-1\right)}\)

\(=\sqrt{-\left[\left(x^2-8x+16\right)-1\right]}\)

\(=\sqrt{-\left(x-4\right)^2+1}\)

\(đk:\)\(-\left(x-4\right)^2+1\ge0\)

\(\Rightarrow\left(x-4\right)^2\le1\)

\(\Rightarrow\orbr{\begin{cases}\left(x-4\right)^2=1\\\left(x-4\right)^2=0\end{cases}}\)

\(\left(x-4\right)^2=1\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

\(\left(x-4\right)^2=0\Rightarrow x=4\)

Vậy căn thức xác định \(\Leftrightarrow x=\left\{3;4;5\right\}\)

6 tháng 6 2019

a)Ta có

    \(\sqrt{3}>0\)

       \(-12< 0\Rightarrow-12< \sqrt{3}\)

Chúc bạn

hok tốt

6 tháng 6 2019

a)Ta có

    \(\sqrt{3}>0\)

       \(-12< 0\Rightarrow-12< \sqrt{3}\)

Chúc bạn

hok tốt

6 tháng 6 2019

\(a,3-\sqrt{1-16x^2}\)

\(=3-\sqrt{-\left(16x^2-1\right)}\)

\(=3-\sqrt{-\left(4x-1\right)\left(4x+1\right)}\)

Căn thức xác định khi \(\sqrt{-\left(4x-1\right)\left(4x+1\right)\ge0}\)

\(\Rightarrow\left(4x-1\right)\left(4x+1\right)\le0\)

.....

6 tháng 6 2019

\(b,\sqrt{2x^2-6}\)

\(=\sqrt{2\left(x^2-3\right)}\)

\(=\sqrt{2\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}\)

Để căn thức xác định \(\Rightarrow\sqrt{2\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}\ge0\)

\(\Rightarrow\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\ge0\)

.....

6 tháng 6 2019

.-.

Dễ dàng chứng minh được \(\hept{\begin{cases}a^2+b^2=\frac{1}{2}\left[\left(a+b\right)^2+\left(a-b\right)^2\right]\\ab=\frac{1}{4}\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\end{cases}}\)

Khi đó : \(a^2+ab+b^2=\frac{1}{2}\left[\left(a+b\right)^2+\left(a-b\right)^2\right]+\frac{1}{4}\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)

\(=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}+\frac{\left(a+b\right)^2}{4}-\frac{\left(a-b\right)^2}{4}\)

\(=\frac{3\left(a+b\right)^2}{4}+\frac{\left(a-b\right)^2}{4}\ge\frac{3\left(a+b\right)^2}{4}\)( vì \(\frac{\left(a-b\right)^2}{4}\ge0\))

Ta có : \(\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)

\(\Rightarrow\frac{1}{\sqrt{a^2+ab+b^2}}\le\frac{2}{\sqrt{3}\left(a+b\right)}\)

Hoàn toàn tương tự ta có \(\hept{\begin{cases}\frac{1}{\sqrt{b^2+bc+c^2}}\le\frac{2}{\sqrt{3}\left(b+c\right)}\\\frac{1}{\sqrt{c^2+ca+c^2}}\le\frac{2}{\sqrt{3}\left(a+c\right)}\end{cases}}\)

Công theo vế của 3 bđt ta được :

\(A\le\frac{2}{\sqrt{3}}\cdot2\cdot\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

\(=\frac{4}{\sqrt{3}}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

Đến đây ta chỉ cần tìm max \(B=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\)

Áp dụng bđt Cauchy-Schawarz dạng engel : \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{9}{2\cdot3}=\frac{3}{2}\)

Tuy nhiên bđt trên đã bị ngược dấu :( mọi người giúp mình với ạ

Ta có  a2+ab+b2=(a+b)2-ab\(\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{\left(3-c\right)^2}{4}\)

=> \(\frac{1}{\sqrt{a^2+ab+b^2}}\le\frac{2}{3-c}\)

Tương tự  \(\frac{1}{\sqrt{b^2+bc+c^2}}\le\frac{2}{3-a}\)

                          \(\frac{1}{\sqrt{c^2+ca+a^2}}\le\frac{2}{3-b}\)

=> \(A\le2\left(\frac{1}{3-a}+\frac{1}{3-b}+\frac{1}{3-c}\right)\)

Đến đây chứng minh <1 là xong

Dấu :"=" xảy ra khi a=b=c=1

6 tháng 6 2019

#)Giải :

a) \(M=\left(3x^3+3x^2y-3xy^2+xy\right)-\left(2x^3-3x^2y-3xy^2+xy+1\right)\)

\(M=\left(3x^3-2x^3\right)+\left(3x^2y-3x^2y\right)+\left(-3xy^2+3xy^2\right)-\left(xy-xy\right)+1\)

\(M=x^3+1\)

b) \(M=-28\Leftrightarrow1+x^3=-28\)

\(\Rightarrow x^3=-27=\left(-3\right)^3=-3\)

Vậy ..................................................

trả lời 

B=-3

chúc bn 

hc tốt