Giải pt :
1-\(\sqrt{2\left(x^2-x+1\right)}=x-\sqrt{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
\(\frac{2}{x^2y^2}.\sqrt{\frac{9\left(x+y\right)^2}{4}}=\frac{2}{x^2y^2}.\frac{3\left(x+y\right)}{2}=\frac{3\left(x+y\right)}{x^2y^2}\)
\(3y^2\sqrt{\frac{x^6}{9y^2}}=3y^2.\frac{x^3}{3y}=x^3y\)
\(\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}\) \(=\frac{3x}{7y}|\frac{7y}{3x}|\left(1\right)\)
mà \(x>0,y< 0\)
=>\(\left(1\right)\) = \(\frac{3x.\left(-7y\right)}{7y.3x}=-1\)
chúc bn học tốt
\(\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}\)
\(=\frac{3x}{7y}\sqrt{\frac{\left(7y\right)^2}{\left(3x\right)^2}}\)\(=\frac{3x}{7y}\cdot\frac{\left|7y\right|}{\left|3x\right|}\)
mak ta có \(x>0;y< 0\)
\(\Rightarrow\frac{3x}{7y}\cdot\frac{-7y}{3x}\)\(\Rightarrow\frac{3x\cdot-7y}{7x\cdot3x}=\left(-1\right)\)
\(\Rightarrow\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}=\left(-1\right)\)
Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)
\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)
Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1
Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)
\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)
Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)
Câu 4:
a) Vì BE,CF là các đường cao của \(\Delta\)ABC nên ^BEC = ^CFB = 900
=> ^BEC và ^CFB cùng nhìn đoạn BC dưới một góc 900
=> Bốn điểm B,C,E,F cùng thuộc đường tròn đường kính BC (Theo quỹ tích cung chứa góc) (đpcm).
b) Gọi Ax là tia tiếp tuyến tại A của đường tròn (O), khi đó OA vuông góc Ax
Từ câu a ta thấy tứ giác BFEC nội tiếp đường tròn (BC) => ^AFE = ^ACB
Mà ^ACB = ^BAx (Tính chất góc tạo bởi tiếp tuyến và dây) nên ^AFE = ^BAx
=> EF // Ax (2 góc so le trong bằng nhau)
Do OA vuông góc Ax nên OA vuông góc EF (Quan hệ song song, vuông góc) (đpcm).
c) +) Ta dễ có ^OAC = 900 - ^AOC/2 = 900 - ^ABC = ^BAH => ^OAC + ^OAH = ^BAH + ^OAH => ^BAI = ^EAP
Xét \(\Delta\)APE và \(\Delta\)AIB: ^EAP = ^BAI, ^AEP = ^ABI (Tứ giác BFEC nội tiếp) => \(\Delta\)APE ~ \(\Delta\)AIB (g.g) (đpcm).
+) Gọi AO cắt đường tròn (O) lần thứ hai tại Q. Khi đó AQ là đường kính của (O)
Nên ta có: ^ABQ = ^ACQ = 900 hay BQ vuông góc AB, CQ vuông góc AC. Mà CH vuông góc AB, BH vuông góc AC
Nên BQ // CH, BH // CQ (Quan hệ song song vuông góc) => Tứ giác BHCQ là hình bình hành
Từ đó HQ đi qua trung điểm K của BC hay H,K,Q thẳng hàng (1)
Cũng dễ thấy ^QBC = ^HCB (Vì BQ // CH) = ^FEH (Vì B,C,E,F cùng thuộc một đường tròn)
Hay ^QBI = ^HEP. Kết hợp với ^BQI = ^BQA = ^ACB = ^AHE (Cùng phụ ^CAH) = ^EHP
Suy ra \(\Delta\)BIQ ~ \(\Delta\)EPH (g.g) => \(\frac{HP}{QI}=\frac{EP}{BI}\). Lại có \(\frac{EP}{BI}=\frac{AP}{AI}\)nên \(\frac{HP}{QI}=\frac{AP}{AI}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)AQH ta có IP // HQ (2)
Từ (1) và (2) ta thu được KH // IP (đpcm).
Nếu ko nhìn rõ thì bn có thể tham khảo tại:
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://vnexpress.net/giao-duc/so-giao-duc-va-dao-tao-ha-noi-cong-bo-dap-an-thi-vao-lop-10-3934904.html
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-ha-noi-nam-2019-c29a45461.html
Bài số 3 như này nhé:
3.Trong hộp có 5 viên bi đỏ,6 viên bi xanh và 9 viên bi vàng.Không nhìn vào hộp thì phải lấy ít nhất mấy viên bi để số bi lấy ra chắc chắn có cả 3 màu?
Toán lớp 9 thì bạn sang bên lazi.vn hoăc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
cách của mình có vẻ dài, tham khảo :
ĐKXĐ \(x\ge0\)
\(1-\sqrt{2\left(x^2-x+1\right)}=x-\sqrt{x}\)
\(\Leftrightarrow\sqrt{2\left(x^2-x+1\right)}=-x+\sqrt{x}+1\)
\(\Rightarrow2\left(x^2-x+1\right)=\left(-x+\sqrt{x}+1\right)^2\)
\(\Leftrightarrow2x^2-2x+2=x^2+x+1-2x\sqrt{x}+2\sqrt{x}-2x\)
\(\Leftrightarrow x^2-x+1+2x\sqrt{x}-2\sqrt{x}=0\)
\(\Leftrightarrow\left(x^2+x\sqrt{x}-x\right)+\left(x\sqrt{x}+x-\sqrt{x}\right)+\left(-x-\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{x}-1\right)^2=0\Leftrightarrow x+\sqrt{x}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\sqrt{x}+\frac{1}{2}=\frac{\sqrt{5}}{2}\)(vì \(\sqrt{x}+\frac{1}{2}>0\))
\(\Leftrightarrow\sqrt{x}=\frac{\sqrt{5}-1}{2}\Leftrightarrow x=\frac{3-\sqrt{5}}{2}\left(tmđk\right)\)
Thử lại ta thấy \(x=\frac{3-\sqrt{5}}{2}\)thỏa mãn phương trình đã cho .
Vậy.................
\(pt\Leftrightarrow1-x+\sqrt{x}=\sqrt{2\left(x^2-x+1\right)}\)
\(\Rightarrow1+x^2+x-2x-2x\sqrt{x}+2\sqrt{x}=2x^2-2x+2\)
\(\Leftrightarrow x^2-x+1+2x\sqrt{x}-2\sqrt{x}=0\)
\(\Leftrightarrow x^2+x+1+2x\sqrt{x}-2\sqrt{x}.1-2x.1=0\)
\(\Leftrightarrow\left(x+\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow x+\sqrt{x}-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\frac{-1+\sqrt{5}}{2}\\\sqrt{x}=\frac{-1-\sqrt{5}}{2}\left(loai\right)\end{cases}}\)
Với \(\sqrt{x}=\frac{-1+\sqrt{5}}{2}\Leftrightarrow x=\frac{3-\sqrt{5}}{2}\)thay vào phương trình ban đầu ta có \(x=\frac{3-\sqrt{5}}{2}\)thỏa mãn phương trình