K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Ta có\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)

\(\Leftrightarrow\frac{x-2}{2016}+1+\frac{x-3}{2017}+1+\frac{x-4}{2018}=0\)

\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\) Vì \(\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)>0\)

\(\Rightarrow x+2014=0\)

\(\Rightarrow x=-2014\)

19 tháng 2 2020

\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)

\(\Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\)

\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)

Mà \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

Vậy \(x=-2014\)

20 tháng 2 2020

A B C D O M

Xét \(\Delta MBD\)cân tại M có : 

\(\widehat{BDM}=60^0\)

\(\Rightarrow\Delta MBD\)là tam giác đều 

\(\Rightarrow\widehat{BDM}=60^0\)

\(\Rightarrow\widehat{BDA}=120^0\)

\(\Rightarrow\)Khi M di chuyển trên cung nhỏ BC thì M di chuyển trên cung tròn ( nằm trên nửa mặt phẳng bờ AB chưa điểm M ) nhìn AB một góc bằng \(120^0\)

Xét \(\Delta DBA\)và \(\Delta MBC\)có :
\(BA=BC\)( vì tam giác ABC đều )

\(\widehat{BAD}=\widehat{BCM}\)( cùng chắn cung BM )
\(\widehat{ABD}=\widehat{CBM}\left(=60^0-\widehat{DBC}\right)\)

Suy ra \(\Delta DBA=\Delta MBC\)

\(\Rightarrow MC=DA\)

\(\Rightarrow MA+MB+MC=MA+MD+DA=2MA\)

\(MA+MB+MC\)lớn nhất khi MA lớn nhất 

\(\Rightarrow AM\)là đường kính của \(\left(O\right)\)

\(\Rightarrow M\)là điểm chính giữa của cung BC

Chúc bạn học tốt !!!