K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2020

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)

21 tháng 11 2020

Bg

Đặt A = \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)

=> A = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

=> A = \(\frac{1}{1.2}-\frac{1}{99.100}\)

=> A = \(\frac{1}{2}-\frac{1}{9900}\)

=> A = \(\frac{4949}{9900}\)

Vậy giá trị của biểu thức trên là \(\frac{4949}{9900}\)

21 tháng 11 2020

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

Khi đó \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\right)\)

=> \(A=1-\frac{1}{2^{2013}}< 1\left(\text{Đpcm}\right)\)

22 tháng 11 2020

k=1 nên x =3, y=4 , z=1

21 tháng 11 2020

Mình đang cần gấp mấy bạn có thể làm giúp mình không ạ ?