Cho tam giac ABC vs ba duong cao AA',BB',CC'.Goi H la truc tam cua tam giac do.Chung minh rang HA' tren AA' + HB' tren BB'+HC'tren CC' =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 1)^3 - x(x + 1)^2 = 5x(2 - x) - 11(x + 2)
<=> -5x^2 + 2x - 1 = -5x2 - x - 22
<=> 2x - 1 = -5x2 - x - 22 + 5x2
<=> 2x - 1 = -x - 22
<=> 2x - 1 + x = -22
<=> 3x - 1 = -22
<=> 3x = -22 + 1
<=> 3x = -21
<=> x = -7
Vậy: phương trình có nghiệm duy nhất là: S = {-7}
\(A=x\left(x+1\right)\left(x^2+x-4\right)\)
\(=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(x^2+x=k\)
Lúc đó \(A=k\left(k-4\right)\)
\(=k^2-4k+4-4=\left(k-2\right)^2-4\ge-4\)
(Dấu "=" xảy ra khi \(k=2\Leftrightarrow x^2+x=2\)
\(\Leftrightarrow x^2+x-2=0\)
Ta có: \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+3}{2}=1\\x=\frac{-1-3}{2}=-2\end{cases}}\))
A B C D G H F E K O
Gọi K là giao điểm của AB và EF
O là giao điểm của AC và BD => OB = OD vì ABCD là hình chữ nhật
Ta có: EK // OB => \(\frac{EK}{OB}=\frac{AE}{AO}\)
EF//OD => \(\frac{EF}{OD}=\frac{AE}{AO}\)
=> \(\frac{EK}{OB}=\frac{EF}{OD}\) mà OD = OB
=> EK = EF mặt khác EH = EB ( H đối xứng với B qua E )
=> KBFH là hình bình hành
=> KB //=HF ( 1)
Ta lại có: KB //GD ( vì G thuộc DC ; AB //DC ; ABCD là hình chữ nhật )
và GK // BD ( giả thiết )
=> GKBD là hình bình hành
=> KB // = GD ( 2)
Từ ( 1) và (2) => HF // = GD
=> HFDG là hình bình hành có: ^FDG = 90 độ ( kề bù ^ADC = 90 độ )
=> HFDG là hình chữ nhật
=> HD = FG ( hai đường chéo bằng nhau)
\(A=2x^2-8x+10\)
\(\Leftrightarrow A=2\left(x^2-4x+5\right)\)
\(\Leftrightarrow A=2\left(x^2-2.2.x+4+1\right)\)
\(\Leftrightarrow A=2\left(x-2\right)^2+2\ge2\)
Dấu " = " xảy ra khi và chỉ khi
\(2\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy min A = 2 <=> x = 2
gap gium cam on may bn nhiu
Tự kẻ hình nha !!
\(\frac{HA}{AA'}+\frac{HB}{BB'}+\frac{HC}{CC'}\)
\(=\frac{S_{HBC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}\)
\(=\frac{S_{ABC}}{S_{ABC}}=1\)