K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Bình phương đi bạn

25 tháng 6 2019

TL:

1đk:x<1

.\(1+3x-1=9x^2\) 

     \(3x=9x^2\) 

   x=3x\(^2\) 

 =>x=0(ktm)  hoặc  x= \(\frac{1}{3}\left(tm\right)\) 

vậy x=\(\frac{1}{3}\) 

hc tốt:)

25 tháng 6 2019

\(\left(x+1\right)\sqrt{x^2-3x+4}=x^2-3x-4\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x^2-3x+4}=\left(x+1\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-3x+4}-x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\sqrt{x^2-3x+4}=x-4\left(1\right)\end{cases}}\)

PT (1) \(\Leftrightarrow\hept{\begin{cases}x^2-3x+1=\left(x-4\right)^2\\x-4\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-3x+1=x^2-8x+16\\x\ge4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=15\\x\ge4\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\left(tm\right)\\x\ge4\end{cases}}}\)

Vậy: \(S=\left\{-1;5\right\}\)

=.= hk tốt!!

25 tháng 6 2019

Đặt \(x+1=a,\sqrt{x^2+x+3}=b\left(b>0\right)\)

=> \(a^2+2b^2=x^2+2x+1+2\left(x^2+x+3\right)=3x^2+4x+7\)

Khi đó PT 

<=> \(a^2+2b^2-3ab=0\)

<=> \(\orbr{\begin{cases}a=b\\a=2b\end{cases}}\)

+ a=b

=> \(x+1=\sqrt{x^2+x+3}\)

<=>\(\hept{\begin{cases}x\ge-1\\x^2+2x+1=x^2+x+3\end{cases}}\)

=> x=2

+ a=2b

=> \(x+1=2\sqrt{x^2+x+3}\)

<=> \(\hept{\begin{cases}x\ge-1\\x^2+2x+1=4\left(x^2+x+3\right)\end{cases}}\)

=> \(\hept{\begin{cases}x\ge-1\\3x^2+2x+11=0\end{cases}}\)(vô nghiệm )

Vậy x=2

5 tháng 7 2019

cảm ơn bạn nhiều

25 tháng 6 2019

A B C x y a M N

G/s: Tam giác đều ABC có cạnh bằng a

Đặt AM=x, AN =y, x, y dương và bé hơn a

=> MB=a-x, NC=a-y

Theo bài ra ta có:

\(\frac{x}{a-x}+\frac{y}{a-y}=1\)

\(\Leftrightarrow-\frac{x}{a-x}-\frac{y}{a-y}=-1\)

\(\Leftrightarrow1-\frac{a}{a-x}+1-\frac{a}{a-y}=-1\)

\(\Leftrightarrow\frac{a}{a-x}+\frac{a}{a-y}=3\)

\(\Leftrightarrow\frac{3}{a}=\frac{1}{a-x}+\frac{1}{a-y}\ge\frac{\left(1+1\right)^2}{a-x+a-y}=\frac{4}{2a-\left(x+y\right)}\)

\(\Leftrightarrow x+y\le\frac{2a}{3}\)

Diện tích tam giác AMN:

\(S_{\Delta AMN}=\frac{1}{2}AM.AN.\sin\widehat{MAN}=\frac{1}{2}.xy.\frac{\sqrt{3}}{2}\)

\(=\frac{\sqrt{3}}{4}.xy\le\frac{\sqrt{3}}{4}\frac{\left(x+y\right)^2}{4}\le\frac{\sqrt{3}}{16}\frac{4a^2}{9}=\frac{\sqrt{3}a^2}{36}\)

Dấu "=" xảy ra khi và chỉ khi: \(x=y=\frac{a}{3}\)

Vậy AM=1/3AB, AN=1/3AC thì diện tích tam giác AMN lớn nhất bằng \(\frac{\sqrt{3}a^2}{36}\)

25 tháng 6 2019

Ta có: 

\(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\)

\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}+\frac{1}{AH^2}+\frac{2}{AB.AC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)

\(\Leftrightarrow\frac{2}{AH^2}+\frac{2}{AH.BC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)(Do \(\hept{\begin{cases}\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\\AB.AC=AH.BC\end{cases}}\)(Hệ thức lượng)

\(\Leftrightarrow\frac{2}{AH}\left(\frac{1}{AH}+\frac{1}{BC}+\frac{1}{AB}+\frac{1}{AC}\right)=1\)

\(\Leftrightarrow\frac{2}{AH}\left(1+\frac{1}{BC}\right)=1\)(Do \(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\))

\(\Leftrightarrow\frac{BC+1}{BC}=\frac{AH}{2}\)

\(\Leftrightarrow2\left(BC+1\right)=AH.BC\)

\(\Leftrightarrow4BC+4=2AB.AC\)(Do AH.BC = AB.AC)

Kết hợp với Py-ta-go trong tam giác vuông ABC: \(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2+4BC+4=AB^2+2AB.AC+AC^2\)

\(\Leftrightarrow\left(BC+2\right)^2=\left(AB+AC\right)^2\)

\(\Leftrightarrow AB+AC=BC+2\)(Do \(\hept{\begin{cases}BC+2>0\\AB+AC>0\end{cases}}\))

Mà 3 cạnh AB,AC,BC là 3 cạnh nguyên lớn hơn 0

=> Chỉ có 2 cặp (AB,AC,BC) thỏa mãn: \(\left(3,4,5\right),\left(4,3,5\right)\)

25 tháng 6 2019

lớp 7 lạc trôi kaka

24 tháng 6 2019

lớp mấy 8 hay 7

24 tháng 6 2019

\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)

\(\Rightarrow\)Biểu thức luôn được xác định với mọi x 

\(b,\sqrt{\frac{3x+4}{x-2}}\)

\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)

\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)

Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)

25 tháng 6 2019

a,\(\sqrt{x^2-8x+18=\sqrt{x^2}-8x+16+2.}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với\(\forall x\)

\(\Rightarrow\)Biểu thức luônđược xác định với mọi x

24 tháng 6 2019

\(\sqrt{8-2\sqrt{7}}-\sqrt{23-8\sqrt{7}}=\) \(\sqrt{1-2\sqrt{7}+7}-\sqrt{7-2.4.\sqrt{7}+16}\)

\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-4\right)^2}\)

\(=\sqrt{7}-1-\left(-\sqrt{7}+4\right)\)

\(=\sqrt{7}-1+\sqrt{7}-4\)\(=2\sqrt{7}-5\)

chúc bn học tốt

=\(\sqrt{\left(\sqrt{7}-1\right)^2}\)\(\sqrt{\left(4-\sqrt{7}\right)^2}\)

\(\sqrt{7}\)- 1 - 4 + \(\sqrt{7}\)

\(2\sqrt{7}\)-5

đ/á ra hơi kì

#mã mã#