Cho \(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=\sqrt{2}\)
Chứng minh rằng \(\frac{x-1}{x+1}=12\sqrt{2}-17\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)<=> \(\hept{\begin{cases}\left(x-2\right)+2\left(y-1\right)=9\\x+\left(y-1\right)=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x-2+2y-2=9\\x+y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x+2y=13\\x+y=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-13\\y=13\end{cases}}\)
TL:
1đk:x<1
.\(1+3x-1=9x^2\)
\(3x=9x^2\)
x=3x\(^2\)
=>x=0(ktm) hoặc x= \(\frac{1}{3}\left(tm\right)\)
vậy x=\(\frac{1}{3}\)
hc tốt:)
\(\left(x+1\right)\sqrt{x^2-3x+4}=x^2-3x-4\)
\(\Leftrightarrow\left(x+1\right)\sqrt{x^2-3x+4}=\left(x+1\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-3x+4}-x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\sqrt{x^2-3x+4}=x-4\left(1\right)\end{cases}}\)
PT (1) \(\Leftrightarrow\hept{\begin{cases}x^2-3x+1=\left(x-4\right)^2\\x-4\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-3x+1=x^2-8x+16\\x\ge4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=15\\x\ge4\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\left(tm\right)\\x\ge4\end{cases}}}\)
Vậy: \(S=\left\{-1;5\right\}\)
=.= hk tốt!!
Đặt \(x+1=a,\sqrt{x^2+x+3}=b\left(b>0\right)\)
=> \(a^2+2b^2=x^2+2x+1+2\left(x^2+x+3\right)=3x^2+4x+7\)
Khi đó PT
<=> \(a^2+2b^2-3ab=0\)
<=> \(\orbr{\begin{cases}a=b\\a=2b\end{cases}}\)
+ a=b
=> \(x+1=\sqrt{x^2+x+3}\)
<=>\(\hept{\begin{cases}x\ge-1\\x^2+2x+1=x^2+x+3\end{cases}}\)
=> x=2
+ a=2b
=> \(x+1=2\sqrt{x^2+x+3}\)
<=> \(\hept{\begin{cases}x\ge-1\\x^2+2x+1=4\left(x^2+x+3\right)\end{cases}}\)
=> \(\hept{\begin{cases}x\ge-1\\3x^2+2x+11=0\end{cases}}\)(vô nghiệm )
Vậy x=2
G/s: Tam giác đều ABC có cạnh bằng a
Đặt AM=x, AN =y, x, y dương và bé hơn a
=> MB=a-x, NC=a-y
Theo bài ra ta có:
\(\frac{x}{a-x}+\frac{y}{a-y}=1\)
\(\Leftrightarrow-\frac{x}{a-x}-\frac{y}{a-y}=-1\)
\(\Leftrightarrow1-\frac{a}{a-x}+1-\frac{a}{a-y}=-1\)
\(\Leftrightarrow\frac{a}{a-x}+\frac{a}{a-y}=3\)
\(\Leftrightarrow\frac{3}{a}=\frac{1}{a-x}+\frac{1}{a-y}\ge\frac{\left(1+1\right)^2}{a-x+a-y}=\frac{4}{2a-\left(x+y\right)}\)
\(\Leftrightarrow x+y\le\frac{2a}{3}\)
Diện tích tam giác AMN:
\(S_{\Delta AMN}=\frac{1}{2}AM.AN.\sin\widehat{MAN}=\frac{1}{2}.xy.\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{4}.xy\le\frac{\sqrt{3}}{4}\frac{\left(x+y\right)^2}{4}\le\frac{\sqrt{3}}{16}\frac{4a^2}{9}=\frac{\sqrt{3}a^2}{36}\)
Dấu "=" xảy ra khi và chỉ khi: \(x=y=\frac{a}{3}\)
Vậy AM=1/3AB, AN=1/3AC thì diện tích tam giác AMN lớn nhất bằng \(\frac{\sqrt{3}a^2}{36}\)
ĐK: \(-1\le x\le1\)\(;\)\(x\ne0\)
\(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=\sqrt{2}\)
\(\Leftrightarrow\)\(\frac{\left(\sqrt{1+x}+\sqrt{1-x}\right)^2}{\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(\sqrt{1+x}+\sqrt{1-x}\right)}=\sqrt{2}\)
\(\Leftrightarrow\)\(\frac{1+x+1-x+2\sqrt{\left(1+x\right)\left(1-x\right)}}{1+x-1+x}=\sqrt{2}\)
\(\Leftrightarrow\)\(\sqrt{1-x^2}=\sqrt{2}x-1\)
\(\Leftrightarrow\)\(1-x^2=2x^2-2\sqrt{2}x+1\)
\(\Leftrightarrow\)\(x^2-\frac{2\sqrt{2}}{3}x=0\)
\(\Leftrightarrow\)\(x\left(x-\frac{2\sqrt{2}}{3}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(l\right)\\x=\frac{2\sqrt{2}}{3}\left(tm\right)\end{cases}}\)
\(\frac{x-1}{x+1}=\frac{\frac{2\sqrt{2}}{3}-1}{\frac{2\sqrt{2}}{3}+1}=\frac{\frac{2\sqrt{2}-3}{3}}{\frac{2\sqrt{2}+3}{3}}=\frac{2\sqrt{2}-3}{2\sqrt{2}+3}=12\sqrt{2}-17\) ( giống như tìm x ở trên )