thực hiện phép tính
\(\sqrt{\left(4-3\sqrt{2}\right)^2}+\sqrt{17+12\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}=\frac{2\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\left(\sqrt[3]{4^2}+\sqrt[3]{4}.\sqrt[3]{2}+\sqrt[3]{2^2}\right)}\)
\(=\frac{2\left(\sqrt[3]{4}-\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}\right)^3-\left(\sqrt[3]{2}\right)^3}=\sqrt[3]{4}-\sqrt[3]{2}\)
\(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}=\frac{2\left(\sqrt[3]{4}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}+\sqrt[3]{2}\right)\left(\sqrt[3]{4^2}-\sqrt[3]{4}.\sqrt[3]{2}+\sqrt[3]{2^2}\right)}\)
\(=\frac{6\left(\sqrt[3]{4}+\sqrt[3]{2}\right)}{\left(\sqrt[3]{4}\right)^3+\left(\sqrt[3]{2}\right)^3}=\sqrt[3]{4}+\sqrt[3]{2}\)
\(P=\frac{xy}{x+y}=\frac{\sqrt[3]{4^2}-\sqrt[3]{2^2}}{2\sqrt[3]{4}}=\frac{\sqrt[3]{4}-1}{2}\)
=>(x-\(\sqrt{5}\))2
=>(x-\(\sqrt{5}\)) (x-\(\sqrt{5}\))
Do m, n cùng dấu, m, n khác 0 nên m, n cùng âm hoặc cùng dương, mà nếu m, n cùng âm thì \(\frac{1}{2m}+\frac{1}{n}< 0< \frac{1}{3}\)
trái với gt \(\Rightarrow\) m, n cùng dương
\(\frac{1}{3}=\frac{1}{2m}+\frac{1}{n}\ge2\sqrt{\frac{1}{2mn}}\)\(\Leftrightarrow\)\(\frac{1}{2mn}\le\frac{1}{36}\)\(\Leftrightarrow\)\(mn\ge18\)\(\Rightarrow\)\(B\ge18\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{2m}=\frac{1}{n}\\\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}m=3\\n=6\end{cases}}}\)
\(\sqrt{A^2}=\left|A\right|\)
Tách: \(\sqrt{15}=\sqrt{15}.1\) mà \(\left(\sqrt{15}\right)^2+1^2=16\ne8\)loại
\(\sqrt{15}=\sqrt{3}.\sqrt{5}\), \(\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2=8\)nhận
\(\sqrt{8-2\sqrt{15}}=\sqrt{3-2\sqrt{3}.\sqrt{5}+5}=\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=\left|\sqrt{3}-\sqrt{5}\right|\)
\(=\sqrt{5}-\sqrt{3}\)
Th1 b <0
ab2 \(\sqrt{\frac{3}{a^2b^2}}\)=ab2 . \(\frac{\sqrt{3}}{ab}\)= \(-b\sqrt{3}\)
th2 b>0
ab2 \(\sqrt{\frac{3}{a^2b^2}}\)= ab2 . . \(\frac{-\sqrt{3}}{ab}\)= -b\(\sqrt{3}\)
#mã mã#
ĐKXĐ \(x^2\ge\sqrt{\frac{5}{6}}\)
Nhân liên hợp ta được
\(6x^2-30=6x^2\left(\sqrt{6x^2-\frac{5}{x^2}}-\sqrt{30-\frac{5}{x^2}}\right)\)
=> \(\sqrt{6x^2-\frac{5}{x^2}}-\sqrt{30-\frac{5}{x^2}}=1-\frac{5}{x^2}\)
Cộng 2 vế của Pt trên và đề bài ta có
\(2\sqrt{6x^2-\frac{5}{x^2}}=6x^2-\frac{5}{x^2}+1\)
=> \((\sqrt{6x^2-\frac{5}{x^2}}-1)^2=0\)
=> \(6x^2-\frac{5}{x^2}=1\)
=> \(6x^4-x^2-5=0\)
<=> \(\orbr{\begin{cases}x^2=1\left(tmĐKXĐ\right)\\x^2=-\frac{5}{6}\left(loai\right)\end{cases}}\)
=> \(x=\pm1\)
Vậy \(x=\pm1\)
= \(3\sqrt{2}\)- 4 + \(\sqrt{\left(2\sqrt{2}+3\right)^2}\)
= \(3\sqrt{2}\)-4 + \(2\sqrt{2}\)+ 3
= \(5\sqrt{2}\)- 1
#mã mã#