1, Cho tam giác ABC vuông tại A , đường cao AH . I ; K lần lượt là trung điểm của AB và AC . Tính AH , BH , CH và diện tích tứ giác AIHK biết IH = 9cm , HK = 12 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A P B M C F E D H 1 1 2 1 2 O
1. Xét tứ giác CEHD ta có:
Góc CEH = 900 (Vì BE là đường cao)
Góc CDH = 900 (Vì AD ___________)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD.
=> CEHD là tứ giác nội tiếp
2. Ta có: BE là đường cao
=> BE ┴ AC => góc BEC = 900.
CF là đường cao => CF ┴ AB => góc BFC = 900.
=> E và F cùng nhìn BC dưới một góc 900
=> E và F cùng nằm trên đường tròn đường kính BC.
Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.
3. Xét hai tam giác AEH và ADC ta có:
góc AEH = góc ADC = 900; góc A là góc chung
=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC
=> AE.AC = AH.AD.
* Xét hai tam giác BEC và ADC ta có:
góc BEC = góc ADC = 900; góc C là góc chung
=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC
=> AD.BC = BE.AC.
1. Xét tứ giác CEHD ta có:
góc CEH = 900 (Vì BE là đường cao)
góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp
2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.
AD là đường cao => AD ┴ BC => BDA = 900.
Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.
Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến
=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.
Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.
#)Sửa đề : x4+2x3+5x2+4x-12=0
#)Giải :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(a,\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\sqrt{3}+2-2\sqrt{3}+2}{3-1}\)
\(=\frac{4}{2}=2\)
\(b,\frac{2+\sqrt{2}}{2-\sqrt{2}}+\frac{2-\sqrt{2}}{2+\sqrt{2}}=\frac{\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)+\left(2-\sqrt{2}\right)\left(2-\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}\)
\(=\frac{4+4\sqrt{2}+2+4-4\sqrt{2}+2}{4-2}\)
\(=\frac{8+4}{2}=\frac{12}{2}=6\)