K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Ta có: B = 4x + 6y - x2 - y2 - 11 = -(x2 - 4x + 4) - (y2 - 6y + 9) + 2 = -(x - 2)2 - (y - 3)2 + 2

Ta luôn có: -(x - 2)2 \(\le\)\(\forall\)x

          -(y - 3)2 \(\le\)\(\forall\)y

=> -(x - 2)2 - (y - 3)2 + 2 \(\le\)\(\forall\)x; y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-2=0\\y-3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy Max của B = 2 tại x = 2 và y = 3

15 tháng 7 2019

\(B=4x+6y-x^2-y^2-11.\)

\(=-\left[x^2-4x+y^2-6y+11\right]\)

\(=-\left[\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-2\right]\)

\(=-\left(x-2\right)^2-\left(y-3\right)^2+2\)

\(B_{min}=2\Leftrightarrow\orbr{\begin{cases}x-2=0\\y-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=3\end{cases}}}\)

15 tháng 7 2019

\(E=\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\left(\frac{5}{12}-\frac{1}{\sqrt{6}}\right)\)

\(E=\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{5\sqrt{6}-12}{18\sqrt{2}}\)

\(E=\frac{36\sqrt{2}}{18\sqrt{6}}+\frac{12\sqrt{3}}{18\sqrt{6}}+\frac{\left(5\sqrt{6}-12\right).\sqrt{3}}{18\sqrt{3}}\)

\(E=\frac{36\sqrt{2}+12\sqrt{3}+\left(5\sqrt{6}-12\right).\sqrt{3}}{18\sqrt{6}}\)

\(E=\frac{51\sqrt{2}}{18\sqrt{6}}\)

\(E=\frac{17\sqrt{2}}{6\sqrt{6}}\)

\(E=\frac{17\sqrt{2}}{2.3\sqrt{2}.\sqrt{3}}\)

\(E=\frac{17}{\sqrt{2}.3\sqrt{2}.\sqrt{3}}\)

\(E=\frac{17}{6\sqrt{3}}\)

\(E=\frac{17\sqrt{3}}{18}\)

15 tháng 7 2019

\(C=\frac{x-y}{\sqrt{x}-\sqrt{y}}\cdot\frac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\cdot\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)

\(=x-y-2\sqrt{y}\)

15 tháng 7 2019

\(C=\frac{x-y}{\sqrt{x}-\sqrt{y}}.\frac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}.\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)\(.\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}\)\(-2\sqrt{y}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)

\(=x-y-2\sqrt{y}\)

15 tháng 7 2019

a^2+18/a>=6a+18/a=(6a+216/a)-198/a>=2×36-33=39

Dấu = xảy ra khi a=6

phương trình chuyển động (coi mốc thơif gian bằng là thời điểm xe 1 xuất phát.......) 
xe 1 : S1 = 8t 
xe 2 : S2 = 12 (t-1/4 ) vì xe 2 đi sau xe1 15' bằng 1/4 giờ. 
xe 3 : S3 = v3 (t-3/4 ) vì xe 3 đi sau xe2 30',tức sau xe1 45' bằng 3/4 giờ. 
Tại thời điểm xe 1 gặp xe 3 : S1=S3 <=> v3(t-3/4) = 8t <=> v3 = 8t/(t-3/4 ) (1) 
Sau 30' thì cách đều,tức t' = t +0.5. ta có : S3=( S1 + S2 )/2 
<=> v3( t+0.5-3/4) = < 8(t+0.5)+12(t+0.5-1/4) >/2 (2) 
từ (1) và (2) thì ta được t =7/4, thay vào 1 ta được v3= 14 km/h.

học tốt

15 tháng 7 2019

Người thứ nhất cách A là:

    (0,5+0,25).8=6(km)
Người thứ hai cách A là:

    0,5.12 =6(km)
Gọi C là nơi nguời 1 gặp người 3
Thời gian người 1 gặp người 3 là:

    t = 6V3−8t = 6 V3−8
Khi đó người 2 cách hai người kia là S = (12−8).6V3−8S = (12−8).6V3−8 
                                                                  = 24V3−8 = 24V3−8
Do sau 30 phút từ khi gặp người 1 người 3 cách đều 2 người kia ta có PT:
(V3−8).0,5 = S+(12−V3).0,5(V3−8).0,5 = S+(12−V3).0,5 

Từ đó tìm được V= 14 (km/h)