K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

a, \(Mg+2HCl\rightarrow MgCl_2+H_2\)

b, Theo ĐLBTKL ta có : 

\(m_{Mg}+m_{HCl}=m_{MgCl_2}+m_{H_2}\)

có \(m_{Mg}=24g;m_{HCl}=36,5g;m_{H_2}=2g\)

\(\Rightarrow m_{MgHCl=24+36,5-2=58,5g}\)

7 tháng 3 2020

1) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)=\left(5-x\right)\left(x-4\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x+5=5-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\3x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{4;0\right\}\)

2) \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-3;2\right\}\)

3) \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(27x^2-12\right)=0\)

\(\Leftrightarrow3\left(x+3\right)\left(9x^2-4\right)=0\)

\(\Leftrightarrow3\left(x+3\right)\left(3x-2\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(3x-2=0\)

hoặc \(3x+2=0\)

\(\Leftrightarrow\)\(x=-3\)

hoặc \(x=\frac{2}{3}\)

hoặc \(x=-\frac{2}{3}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-3;\frac{2}{3};-\frac{2}{3}\right\}\)

7 tháng 3 2020

1, (2x + 5)(x + 4) = (x - 5)(4 - x)

<=>(2x + 5)(x - 4) = -(x - 5)(x - 4)

<=>(2x + 5)(x - 4) + (x - 5)(x - 4)

<=>(x - 4)(2x + 5 + x -5)

<=>(x - 4) . 3x

\(\orbr{\begin{cases}x-4=0\\3x=0\end{cases}}\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Vậy ....

2, (x - 2)(3x + 5) = (2x - 4)(x + 1)

<=>( x - 2)(3x + 5)=x(x - 2)(x + 1)

<=>(x - 2)(3x + 5) - 2(x - 2)(x + 1)=0

<=>(x - 2)(3x + 5 - 2x -2)=0

<=>(x - 2)(x - 3)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

3, 27x2(x + 3) - 12(x2 + 3x) = 0

<=> 27x2(x + 3) - 12x(x + 3)=0

<=>(x + 3)(27x- 12x)=0

<=>(x + 3) . 3x(9x -4)

<=>3x = 0 => x =0

\(\orbr{\begin{cases}x+3=0\\9x-4=0\end{cases}}\orbr{\begin{cases}x=-3\\x=\frac{4}{9}\end{cases}}\)

Vậy x=( 0; -3 ; 4/9)

Gọi số cần tìm là ab2 (a,b\(\inℕ^∗\))

Theo đề ta có: ab2 -ab =200

<=> ab2=200+ab

<=>a.100+b.10+2=200+a.10+b

<=>a.90+b.9+2=200

<=>9.(10a+b)=198

<=>10a+b=22

+,TH1:a=1

ð  10a+b=22

<=>10+b=22

ð  b=12(loại)

+,TH2:a=2

ð  10a+b=22

<=> 20+b=22

<=>b=2(chọn)

Vậy số cần tìm là 222

cách này hay hơn nè

Gọi số sau khi bỏ chữ số 22 là xx(x>0x>0)

Theo đề bài ta có:

10x+2=x+20010x−x=200−29x=198x=2210x+2=x+20010x−x=200−29x=198x=22

Vậy sau khi bỏ chữ số 22 ở hàng đơn vị thì số còn lại là 2222

⇒⇒ Số cần tìm là 222

7 tháng 3 2020

Đặt 

x=a+b , y=b+c , z=c+a

=> x+y+z=2

Ta cần chứng minh x+z > 4xyz

Ta có 

4(x+z)=(x+y+z)2

(x+z) > 4y.4xz=16xyz

= 4y(x+z)2 > 4y.4xz= 16xyz

=>x+z > 4xyz

Hoàn tất chứng minh . Dấu "=" xảy ra khi x=z=1/2:y=1 thế vào tìm a,b,c.

Chúc bn hok tốt

7 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}y\ne2\\y\ne4\end{cases}}\)

\(\frac{y-1}{y-2}-\frac{3+y}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)-\left(3+y\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)

\(\Leftrightarrow y^2-5y+4-y^2-y+6=-2\)

\(\Leftrightarrow-6y+10=-2\)

\(\Leftrightarrow-6y+12=0\)

\(\Leftrightarrow y=2\)(KTM)
Vậy tập nghiệm của phương trình là \(S=\varnothing\)

7 tháng 3 2020

:))) tự lm

( mà mik cũng ko bt đâu nha )

7 tháng 3 2020

a) \(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=0=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x+1=0\\x^2-x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

Sửa \(2\left(a-1\right)x-a\left(x-1\right)=2a+3\)

\(2x\left(a-1\right)-a\left(x-1\right)=2a+3\)

\(2xa-2x-ax+a=2a+3\)

\(ax-2x=2a+3-a\)

\(ax-2x=a+3\)

\(x\left(a-2\right)=a+3\)

Vậy pt cs nghiệm \(x=\frac{a+3}{a-2}\)

6 tháng 3 2020

Mong các bạn làm nhanh hộ mình, mình đang cần gấp.

6 tháng 3 2020

Hình tự vẽ nhé!

a, gEBC=90 vì là góc tạo bởi 2 tia phân giác của 2 góc kề bù (có t/c này nhé)

=>tgAEBF là hcn vì có 3 góc vuông

b, hcn là hình vuông thì có thêm đk là đg chéo là tia p/g của 1 góc=> BA là p/g gEBF=>gABE=45=>ABC=90=>tgABC vuông tại B

c,vì tg AKB vuông tại K, có O( gọi O là giao điểm của EF và AB) là trung điểm EF(theo t/c hcn)

=> OK=OB=OA( theo định lý bổ sung trong tg vuông)

=>OK=OE=OF( vì ob=oa=oe=of)

=>tg EFK vuông tại K ( theo định lý bổ sung đảo)

d, Có gFEB=gOBE ( theo t/c hcn) => gFEB=gEBK =>tg FBKE là hình thang vì có BK//EF