K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

tự kẻ hình

a, xét tam giác ABC và tam giác HBA có : góc B chung

góc BAC = góc BHA = 90

=> tam giác ABC đồng dạng với tam giác HBA (g-g)

=>  AB/BH = AC/AH 

=> AB.AH = BH.AC 

b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)

BH = 3; AB = 5(gt)

=> 3^2 + AH^2 = 5^2

=> AH^2 = 16

=> AH = 4 do AH > 0

xét tam giác ABH có : BI là pg của góc ABH (gt)

=> AI/AB = IH/BH (tính chất)

=> AI+IH/AB+BH = AI/AB = IH/BH

=> AH/AB + BH = AI/AB = IH/BH 

có: AH = 4; AB = 5; BH = 3

=> 4/3+5 = AI/5 = IH/3

=> AI/5 = IH/3 = 1/2

=> AI = 5/2 và IH = 3/2

c,  góc CAH = 90 - góc HAB 

góc HBA = 90 - góc HAB 

=> góc CAH = góc HBA 

xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90

=> tam giác AHC đồng dạng với tam giác BHA (g-g)

=>  AC/AB = AH/HB

=> AC/AH = AB/HB 

BI là pg của tam giác AHB => AI/AH = AB/AB

CK là pg của tam giác AHC => CK/KH = AC/AH

=> AI/AH = CK/KH

=> KI // AC

8 tháng 3 2020

Thời gian ô tô đi hết quãng đường AB là: 3 giờ 15 phút

Đổi 3 giờ 15 phút=195 phút

Độ dài quãng đường AB là:
195 x 40=7800(km)

Đáp số 7800 km

Thời gian ô tô đi hết quãng đường AB là :

9 giờ 30 phút - 6 giờ 15 phút = 3 giờ 15 phút 

Đổi 3 giờ 15 phút = 195 phút

Độ dài quãng đường AB là : 

40 x 195 = 7800 ( km )

   Đáp số : 7800 km

1, 2mx−1x−1=m−2 (x≠1)(x≠1)

⇔ 2mx−1=(m−2)(x−1)

⇔ 2mx−1=x(m−2)−m+2

⇔ x.(m+2)=−m+3x.(m+2)=−m+3

Nếu m+2=0m+2=0 hay m=−2m=−2 thì 0x=5

⇒ PT vô nghiệm

Nếu m+2≠0 hay m≠−2 thì x=3mm+2

2, 2x2x²−5x+3+9x2x²−x−3=6

⇔ 2x(3x−2).(x−1)+9x(3x−2).(x+1)=6

⇔ 2x(x+1)(3x−2).(x−1)(x+1)+9x(x−1)(3x−2).(x+1)(x−1)=6

⇒ 2x(x+1)+9x(x−1)=6(3x−2)(x+1)(x−1)

⇔ 11x²−7x=18x³−12x²−18x+12

⇔ 18x³−13x²−11x+12=0

8 tháng 3 2020

Gọi \(A=x^2+y^2+xy-3x-3y-3\)

\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-6\)

\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-6\)

\(=\left(x-1\right)^2+2\left(x-1\right)\frac{1}{2}\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2+\frac{3}{4}\left(y-1\right)^2-6\)

\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)Có GTNN là -6

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow x=y=1}\)

Vậy GTNN của A là -6 tại x = y = 1

A= x2+y2+xy-3x-3y-3

\(=\left[x-1+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-6\ge-6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1+\frac{1}{2}\left(y-1\right)=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy.............

8 tháng 3 2020

Diện tích hình vuông 10 x 10: 1022=100

Diện tích 1 hình chữ nhật: 1.4=4

Vì 100:4=25 nên có thể phủ kín hình vuông vơis 25 hình chữ nhật.

#Châu's ngốc

a) \(p=\left(\frac{x^2-x}{x+1}\right)\left(\frac{4x-2x+2}{x\left(x-1\right)}\right)\)

\(=\frac{x\left(x-1\right)}{x+1}.\frac{2\left(x+1\right)}{x\left(x-1\right)}=2\)

b)\(m=\frac{x+2-\left(x-2\right)+x^2+4x}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)

Để m nguyên thì \(4⋮x-2\)

\(\Rightarrow x-2\in\left\{1,2,4,-1,-2,-4\right\}\)

\(\Leftrightarrow x\in\left\{3,4,6,1,0,-2\right\}\)

8 tháng 3 2020

\(M=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4x}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow M=\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x+2-x+2+x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=\frac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{x-2}\)

Để M có giá trị nguyên thì x+2 chia hết cho x-2

Ta có x+2=x-2+4

=> x-2+4 chia hết cho x-2

=>4 chia hết cho x-2

Vì x nguyên => x-2 nguyên

=> x-2 thuộc Ư (4)={-4;-2;-1;1;2;4}

Ta có bảng

x-2-4-2-1124
x-201346
8 tháng 3 2020

\(\Leftrightarrow y^2-3y+7-10+y=0\)

\(\Leftrightarrow y^2-2y+1-4=0\)

\(\Leftrightarrow\left(y-1\right)^2-4=0\)

\(\Leftrightarrow\left(y-1-4\right)\left(y-1+4\right)=0\)

\(\Leftrightarrow\left(y-5\right)\left(y+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-3\end{cases}}\)

Vậy ....

\(y^2-3y+7=10-y\)

\(y^2-3y+7-10+y=0\)

\(y^2-2y-3=0\)

\(\left(y-3\right)\left(y+1\right)=0\)

\(y=3;-1\)

ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

\(M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\frac{x-3}{2x}\left(1-\frac{6}{x-3}\right)\)

\(=\frac{x-3}{2x}.\frac{x-9}{x-3}=\frac{x-9}{2x}\)

8 tháng 3 2020

\(M=\frac{\left(x-3\right)^2}{2x^2-6x}\left(1-\frac{6x+18}{x^2-9}\right)\left(x\ne\pm3;x\ne0\right)\)

\(\Leftrightarrow M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)

\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\left(1-\frac{6}{x-3}\right)\)

\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\frac{x-9}{x-3}\)

\(\Leftrightarrow M=\frac{x-9}{2x}\)

Vậy với \(x\ne\pm3;x\ne0\)thì \(M=\frac{x-9}{2x}\)