giải phương trình:
\(\frac{x-1}{2}\)(x-2) =\(\frac{x-1}{2}\)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - 2x - 15
= x^2 + 3x - 5x - 15
= x(x + 3) - 5(x + 3)
= (x - 5)(x + 3)
\(x^2-2x-15\)\(=\left(x^2-5x\right)+\left(3x-15\right)\)
\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)
(x2 - 4x)2 + 2(x - 2)2 = 43
<=> x2(x - 4)2 + 2(x - 2)2 = 43
<=> x4 - 8x3 + 16x2 + 2x2 - 8x + 8 = 43
<=> x4 - 8x3 + 18x2 - 8x + 8 - 43 = 0
<=> x4 - 8x3 + 18x2 - 8x - 35 = 0
<=> (x3 - 9x2 + 27x - 35)(x + 1) = 0
<=> (x2 - 4x + 7)(x - 5)(x + 1) = 0
vì x2 - 4x + 7 khác 0 nên:
<=> x - 5 = 0 hoặc x + 1 = 5
<=> x = 5 hoặc x = -1
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\left[x\left(x-4\right)^2\right]+2\left(x-2\right)^2=43\)
\(x^2\left(x-4\right)^2+2\left(x-2\right)^2=43\)
\(x^4-8x^3+16x^2+2x^2-8x+8=43\)
\(x^4-8x^3+18x^2-8x+8-43=0\)
\(\left(x^3-9x^2+27x-35\right)\left(x+1\right)=0\)
\(x=5;-1\)
\(\frac{x}{x+1}+\frac{3\left(x-1\right)}{x}=5\)
\(\Leftrightarrow\frac{2x.x}{x\left(x+1\right)}+\frac{3\left(x+1\right)\left(x-1\right)}{x\left(x+1\right)}=\frac{5x\left(x+1\right)}{x\left(x+1\right)}\)
<=>\(\frac{2x^2}{x\left(x+1\right)}+\frac{3\left(x^2-1\right)}{x\left(x+1\right)}=\frac{5x^2+5x}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{2x^2}{x\left(x+1\right)}+\frac{3x^2-3}{x\left(x+1\right)}=\frac{5x^2+5x}{x\left(x+1\right)}\)
\(\Rightarrow2x^2+3x^3-3=5x^2+5x\)
\(\Leftrightarrow2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow-3-5x=0\)
\(\Leftrightarrow-5x=3\)
\(\Leftrightarrow x=\frac{-3}{5}\)
CHÚC EM HỌC TỐT!!!
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
A B C D M N E
Ta có : \(\frac{MD}{MA}=\frac{NC}{NB}=\frac{m}{n}\)
\(\Rightarrow\frac{AM}{AD}=\frac{AM}{AM+MD}=\frac{n}{m+n}=\frac{ME}{DC}\)
và \(\frac{NC}{BC}=\frac{NC}{NC+NB}=\frac{m}{m+n}=\frac{NE}{AB}\)
\(\Rightarrow ME=\frac{nDC}{m+n}\)
và \(NE=\frac{mAB}{m+n}\)
\(\Rightarrow MN=ME+NE=\frac{nDC+mAB}{m+n}\)(ĐPCM)
<=> \(\frac{x^2-3x+2}{2}=\frac{x^2+2x-3}{2}\)
=> x2 - 3x + 2 = x2 + 2x - 3
<=> 5x = 5
<=> x = 1
Vậy S = {1}
\(\frac{x-1}{2}\left(x-2\right)=\frac{x-1}{2}\left(x+3\right)\)
\(\frac{\left(x-1\right)\left(x-2\right)}{2}=\frac{\left(x-1\right)\left(x+3\right)}{2}\)
\(\left(x-1\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x^2-2x-x+2=x^2+3x-x-3\)
\(x^2-3x+2=x^2+3x-x-3\)
\(x^2+3x+2=2x-3\)
\(-3x+2=2x-3\)
\(2=2x-3+3x\)
\(2=5x-3\)
\(5x=5\Leftrightarrow x=1\)